Seasonal Variations and Sources of 17 Aerosol Metal Elements in Suburban Nanjing, China
Abstract
:1. Introduction
2. Methodology
2.1. Site Description
2.2. Sample Collection and Preparation
2.3. Sample Analyses
2.4. Quality Assurance and Quality Control
2.5. Scanning Electron Microscopy
2.6. PMF Analysis
3. Results and Discussion
3.1. Characteristics of Metal Elements
3.1.1. Annual Characteristic of Metal Elements
3.1.2. Seasonal Variations of Atmospheric Metals
3.1.3. Meteorological Influences
3.2. Source Apportionment of Selected Atmospheric Metal Elements
3.3. Particle Morphology and Composition
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cohen, A. Global Burden of Disease 2010; Institute for Health Metrics and Evaluation: Washington, DC, USA, 2013. [Google Scholar]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.; Vander Hoorn, S.; Murray, C.J.L. Selected major risk factors and global and regional burden of disease. Lancet 2002, 360, 1347–1360. [Google Scholar] [CrossRef]
- Srivastava, A.; Jain, V.K. Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi. Chemosphere 2007, 68, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Obrist, D.; Zielinska, B.; Gertler, A. Particulate emissions from different types of biomass burning. Atmos. Environ. 2013, 72, 27–35. [Google Scholar] [CrossRef]
- Schwarz, J.; Stefancova, L.; Maenhaut, W.; Smolik, J.; Zdimal, V. Mass and chemically speciated size distribution of Prague aerosol using an aerosol dryer--the influence of air mass origin. Sci. Total Environ. 2012, 437, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J. Measuring the global burden of disease and risk factors, 1990–2001. Glob. Burd. Dis. Risk Factors 2006, 1, 1–14. [Google Scholar]
- Zhang, J.J.; Smith, K.R. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions. Environ. Health Perspect. 2007, 115, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.G.; Nemitz, E.; Shi, J.P.; Harrison, R.M.; Greenwood, J.C. Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos. Environ. 2001, 35, 4581–4591. [Google Scholar] [CrossRef]
- Moreno, T.; Kojima, T.; Querol, X.; Alastuey, A.; Amato, F.; Gibbons, W. Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan. Sci. Total Environ. 2012, 424, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Pallarés, S.; Pardo, F.; Vicente, A.B.; Sanfeliu, T.; Bech, J. Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. J. Geochem. Explor. 2012, 113, 36–44. [Google Scholar] [CrossRef]
- Pereira, P.A.P.; Lopes, W.A.; Carvalho, L.S.; da Rocha, G.O.; Nei de Bahia, C.; Loyola, J.; Quiterio, S.L.; Escaleira, V.; Arbilla, G.; de Andrade, J.B. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil. Atmos. Environ. 2007, 41, 7837–7850. [Google Scholar] [CrossRef]
- Jalkanen, L.; Makinen, A.; Hasanen, E.; Juhanoja, J. The effect of large anthropogenic particulate emissions on atmospheric aerosols, deposition and bioindicators in the eastern Gulf of Finland region. Sci. Total Environ. 2000, 262, 123–136. [Google Scholar] [CrossRef]
- Connan, O.; Maro, D.; Hébert, D.; Roupsard, P.; Goujon, R.; Letellier, B.; Cavelier, S.L. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmos. Environ. 2012, 67, 394–403. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Yi, S.-M.; Totten, L.A.; Thota, S.; Yan, S.; Offenberg, J.H.; Eisenreich, S.J.; Graney, J.; Holsen, T.M. Atmospheric dry deposition of trace elements measured around the urban and industrially impacted NY–NJ harbor. Atmos. Environ. 2006, 40, 6626–6637. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Solomon, S. Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Valavanidis, A.; Fiotakis, K.; Bakeas, E.; Vlahogianni, T. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep. 2005, 10, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Seaton, E.K.; Caldwell, C.H.; Sellers, R.M.; Jackson, J.S. An intersectional approach for understanding perceived discrimination and psychological well-being among African American and Caribbean Black youth. Dev. Psychol. 2010, 46, 1372. [Google Scholar] [CrossRef] [PubMed]
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Schmeling, M. Seasonal variations in diurnal concentrations of trace elements in atmospheric aerosols in Chicago. Anal. Chim. Acta 2003, 496, 315–323. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environ. Pollut. 2013, 181, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.; Yardley, R.E.; Muhunthan, D.; Butterfield, D.M.; Williams, M.; Woods, P.T.; Brown, A.S.; Goddard, S.L. Twenty-five years of nationwide ambient metals measurement in the United Kingdom: Concentration levels and trends. Environ. Monit. Assess. 2008, 142, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Heimbürger, L.-E.; Migon, C.; Dufour, A.; Chiffoleau, J.-F.; Cossa, D. Trace metal concentrations in the North-western Mediterranean atmospheric aerosol between 1986 and 2008: Seasonal patterns and decadal trends. Sci. Total Environ. 2010, 408, 2629–2638. [Google Scholar] [CrossRef] [PubMed]
- Pulles, T.; Gon, H.D.; Appelman, W.; Verheul, M. Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos. Environ. 2012, 61, 641–651. [Google Scholar] [CrossRef]
- Ilyin, I.; Rozovskaya, O.; Travnikov, O.; Varygina, M.; Aas, W.; Uggerud, H. Heavy Metals: Transboundary Pollution of the Environment, EMEP Status Report 2/2011; Norwegian Institute for Air Research, Kjeller, Norway and Meteorological Synthesizing Centre-East: Moscow, Russia, 2011. [Google Scholar]
- Makkonen, U.; Hellen, H.; Anttila, P.; Ferm, M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Sci. Total Environ. 2010, 408, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y.; Sun, Y.; Tian, S.; Cheng, M. Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport. Sci. Total Environ. 2013, 461–462, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Tan, J.; Hao, J.; Chai, F. Size distribution, characteristics and sources of heavy metals in haze episod in Beijing. J. Environ. Sci. 2014, 26, 189–196. [Google Scholar] [CrossRef]
- Witt, M.L.I.; Meheran, N.; Mather, T.A.; de Hoog, J.C.M.; Pyle, D.M. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK. Atmos. Environ. 2010, 44, 1524–1538. [Google Scholar] [CrossRef]
- Mbengue, S.; Alleman, L.Y.; Flament, P. Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmos. Res. 2014, 135–136, 35–47. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Li, G.; Bi, X.; Zhu, J.; Qin, H.; Dai, Z.; Liu, J.; Li, Q.; Sun, G. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environ. Pollut. 2013, 182, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Gao, Y. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey–New York metropolitan area. Atmos. Environ. 2011, 45, 6714–6723. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Wang, S.; Hao, J.; Chai, F. Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. J. Environ. Sci. 2012, 24, 87–94. [Google Scholar] [CrossRef]
- Keane, B.; Collier, M.H.; Shann, J.R.; Rogstad, S.H. Metal content of dandelion leaves in relation to soil contamination and airborne particulate matter. Sci. Total Environ. 2001, 281, 63–78. [Google Scholar] [CrossRef]
- Pui, D.Y.H.; Chen, S.-C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Rippey, B.; Rose, N.; Yang, H.; Harrad, S.; Robson, M.; Travers, S. An assessment of toxicity in profundal lake sediment due to deposition of heavy metals and persistent organic pollutants from the atmosphere. Environ. Int. 2008, 34, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Tan, J. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Mmari, A.G.; Potgieter-Vermaak, S.S.; Bencs, L.; McCrindle, R.I.; Van Grieken, R. Elemental and ionic components of atmospheric aerosols and associated gaseous pollutants in and near Dar es Salaam, Tanzania. Atmos. Environ. 2013, 77, 51–61. [Google Scholar] [CrossRef]
- Pavuluri, C.M.; Kawamura, K.; Mihalopoulos, N.; Fu, P. Year-round observations of water-soluble ionic species and trace metals in Sapporo aerosols: Implication for significant contributions from terrestrial biological sources in Northeast Asia. Atmos. Chem. Phys. Discuss. 2013, 13, 6589–6629. [Google Scholar] [CrossRef]
- Tan, J.-H.; Duan, J.-C.; Chen, D.-H.; Wang, X.-H.; Guo, S.-J.; Bi, X.-H.; Sheng, G.-Y.; He, K.-B.; Fu, J.-M.; El-Wahab, M. Chemical characteristics of haze during summer and winter in Guangzhou. Atmos. Res. 2009, 94, 238–245. [Google Scholar] [CrossRef]
- Lee, C.S.L.; Li, X.-D.; Zhang, G.; Li, J.; Ding, A.-J.; Wang, T. Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants. Atmos. Environ. 2007, 41, 432–447. [Google Scholar] [CrossRef]
- Cheng, S. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. Res. 2003, 10, 192–198. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, Y.; Lu, J.; Zhang, C. Atmospheric particle characterization, distribution, and deposition in Xi’an, Shaanxi Province, Central China. Environ. Pollut. 2011, 159, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Richard, A.; Gianini, M.F.D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M.C.; Lienemann, P.; Flechsig, U.; Appel, K.; DeCarlo, P.F.; et al. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmos. Chem. Phys. 2011, 11, 8945–8963. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Zhang, Y.; Ma, Y.; Chen, M.; Ge, X.; Ma, Y.; Zheng, J.; Wang, Z.; Li, S. Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality. Atmos. Pollut. Res. 2016, 7, 547–556. [Google Scholar] [CrossRef]
- Illuminati, S.; Bau, S.; Annibaldi, A.; Mantini, C.; Libani, G.; Truzzi, C.; Scarponi, G. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land. Atmos. Environ. 2016, 125, 212–221. [Google Scholar] [CrossRef]
- Illuminati, S.; Annibaldi, A.; Truzzi, C.; Libani, G.; Mantini, C.; Scarponi, G. Determination of water-soluble, acid-extractable and inert fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry after sequential extraction and microwave digestion. J. Electroanal. Chem. 2015, 755, 182–196. [Google Scholar] [CrossRef]
- Ramanathan, T.; Ting, Y.-P. Selection of wet digestion methods for metal quantification in hazardous solid wastes. J. Environ. Chem. Eng. 2015, 3, 1459–1467. [Google Scholar] [CrossRef]
- Sánchez Vilas, J.; Campoy, J.G.; Retuerto, R. Sex and heavy metals: Study of sexual dimorphism in response to soil pollution. Environ. Exp. Bot. 2016, 126, 68–75. [Google Scholar] [CrossRef]
- ICH Harmonized Tripartite Guideline, Validation of Analytical Procedure: Text and Methodologies, Q2 (R1). Available online: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed on 23 November 2016).
- Truzzi, C.; Illuminati, S.; Finale, C.; Annibaldi, A.; Lestingi, C.; Scarponi, G. Microwave-assisted solvent extraction of melamine from seafood and determination by gas chromatography–mass spectrometry: Optimization by factorial design. Anal. Lett. 2014, 47, 1118–1133. [Google Scholar] [CrossRef]
- Truzzi, C.; Annibaldi, A.; Illuminati, S.; Finale, C.; Rossetti, M.; Scarponi, G. Determination of Very Low Levels of 5-(Hydroxymethyl)-2-furaldehyde (HMF) in Natural Honey: Comparison Between the HPLC Technique and the Spectrophotometric White Method. J. Food Sci. 2012, 77, C784–C790. [Google Scholar] [CrossRef] [PubMed]
- Paatero, P. The multilinear engine—A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 1999, 8, 854–888. [Google Scholar]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Padoan, E.; Malandrino, M.; Giacomino, A.; Grosa, M.M.; Lollobrigida, F.; Martini, S.; Abollino, O. Spatial distribution and potential sources of trace elements in PM10 monitored in urban and rural sites of Piedmont Region. Chemosphere 2016, 145, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yuan, Q.; Li, W.; Lu, Y.; Zhang, Y.; Wang, W. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 2014, 26, 205–213. [Google Scholar] [CrossRef]
- Toscano, G.; Moret, I.; Gambaro, A.; Barbante, C.; Capodaglio, G. Distribution and seasonal variability of trace elements in atmospheric particulate in the Venice Lagoon. Chemosphere 2011, 85, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Lu, X.; Li, L.Y.; Gao, T.; Chang, Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total Environ. 2014, 484, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Stein, A.F.; Maldonado, P.G.; Sanchez de la Campa, A.M.; Gonzalez-Castanedo, Y.; Castell, N.; de la Rosa, J.D. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model. Atmos. Environ. 2013, 71, 234–244. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2003. [Google Scholar]
- Yang, L.; Cheng, S.; Wang, X.; Nie, W.; Xu, P.; Gao, X.; Yuan, C.; Wang, W. Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China. Atmos. Environ. 2013, 75, 265–269. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Q.; Zheng, M.; Ding, X.; Edgerton, E.S.; Wang, X. Characterization and source apportionment of water-soluble organic matter in atmospheric fine particles (PM2.5) with high-resolution aerosol mass spectrometry and GC-MS. Environ. Sci. Technol. 2011, 45, 4854–4861. [Google Scholar] [CrossRef] [PubMed]
- Young, T.M.; Heeraman, D.A.; Sirin, G.; Ashbaugh, L.L. Resuspension of soil as a source of airborne lead near industrial facilities and highways. Environ. Sci. Technol. 2002, 36, 2484–2490. [Google Scholar] [CrossRef] [PubMed]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Figi, R.; Richard, A.; Furger, M.; Rickers, K.; Falkenberg, G.; Zhao, Y.; Cliff, S.S. Real-world emission factors for antimony and other brake wear related trace elements: Size-segregated values for light and heavy duty vehicles. Environ. Sci. Technol. 2009, 43, 8072–8078. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Tilling, R.; Callén Romero, M.A.S.; Harrad, S.; Jarvis, K. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos. Environ. 2003, 37, 2391–2402. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Xue, Z.; Cheng, K.; Qu, Y.; Chai, F.; Hao, J. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmos. Chem. Phys. 2010, 10, 11905–11919. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.J.; Louie, P.K.K.; Liu, W.K.; Bi, X.H.; Fu, J.M.; Wong, M.H. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2.5 at an electronic waste recycling site in southeast China. Atmos. Environ. 2006, 40, 6945–6955. [Google Scholar] [CrossRef]
- Fang, G.; Wu, Y.; Huang, S.; Rau, J. Review of atmospheric metallic elements in Asia during 2000–2004. Atmos. Environ. 2005, 39, 3003–3013. [Google Scholar] [CrossRef]
- Shah, M.H.; Shaheen, N. Seasonal behaviours in elemental composition of atmospheric aerosols collected in Islamabad, Pakistan. Atmos. Res. 2010, 95, 210–223. [Google Scholar] [CrossRef]
- Zheng, Y.; Teng, Y. Emission characteristics of vanadium in air. Environ. Sci. Manag. 2012, 37, 20–24. [Google Scholar]
- Kara, M.; Dumanoglu, Y.; Altiok, H.; Elbir, T.; Odabasi, M.; Bayram, A. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey. Atmos. Res. 2014, 149, 204–216. [Google Scholar] [CrossRef]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.C. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication. Atmos. Chem. Phys. Discuss. 2014, 14, 5147–5196. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, X.; Wang, F.; Yu, G. The physicochemical properties of different biomass ashes at different ashing temperature. Renew. Energy 2011, 36, 244–249. [Google Scholar] [CrossRef]
- Lü, S.; Zhang, R.; Yao, Z.; Yi, F.; Ren, J.; Wu, M.; Feng, M.; Wang, Q. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 2012, 24, 882–890. [Google Scholar] [CrossRef]
- Senlin, L.; Zhenkun, Y.; Xiaohui, C.; Minghong, W.; Guoying, S.; Jiamo, F.; Paul, D. The relationship between physicochemical characterization and the potential toxicity of fine particulates (PM2.5) in Shanghai atmosphere. Atmos. Environ. 2008, 42, 7205–7214. [Google Scholar] [CrossRef]
- Xie, R.K.; Seip, H.M.; Leinum, J.R.; Winje, T.; Xiao, J.S. Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Sci. Total Environ. 2005, 343, 261–272. [Google Scholar] [CrossRef] [PubMed]
Min | Max | Mean | Medium | SD | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|
PM2.5/104 | 4.56 | 40.30 | 12.50 | 17.50 | 6.42 | 1.59 | - |
Na | 170.53 | 777.89 | 369.10 | 355.71 | 122.17 | 1.02 | 1.23 |
Mg | 137.89 | 453.72 | 246.40 | 243.28 | 67.85 | 0.59 | 0.42 |
Al | 2.96 | 607.16 | 114.95 | 127.71 | 95.92 | 2.22 | 10.31 |
V | 0.84 | 8.82 | 3.95 | 3.81 | 1.81 | 0.55 | −0.07 |
Cr | 5.61 | 54.63 | 24.76 | 19.60 | 15.48 | 0.28 | −1.51 |
Mn | 17.00 | 153.54 | 58.97 | 56.02 | 30.05 | 0.62 | 0.32 |
Ni | 3.53 | 18.89 | 8.10 | 7.01 | 3.53 | 1.32 | 1.49 |
Cu | 7.80 | 206.20 | 29.44 | 22.27 | 29.30 | 4.17 | 22.20 |
Zn | 64.87 | 850.00 | 254.80 | 237.98 | 167.23 | 2.89 | 11.80 |
As | 1.47 | 21.06 | 6.30 | 4.06 | 4.95 | 1.26 | 0.62 |
Se | 1.23 | 8.41 | 4.51 | 4.07 | 1.91 | 0.50 | −0.74 |
Sr | 2.56 | 15.14 | 5.99 | 4.92 | 2.87 | 1.10 | 0.74 |
Cd | 0.46 | 6.62 | 2.09 | 1.72 | 1.38 | 1.64 | 3.19 |
Ba | 7.52 | 65.57 | 20.00 | 16.25 | 10.44 | 1.88 | 4.93 |
Pb | 15.26 | 145.50 | 67.37 | 66.18 | 25.53 | 0.36 | 0.38 |
Mo | 0.96 | 51.19 | 8.48 | 6.74 | 8.42 | 3.02 | 11.55 |
Sb | 0.31 | 10.14 | 2.37 | 1.50 | 2.30 | 1.82 | 3.08 |
Total metal | 571.04 | 3324.24 | 1227.58 | 1178.79 | - | - | - |
Na | Mg | Al | V | Cr | Mn | Ni | Cu | Zn | As | Se | Sr | Cd | Ba | Pb | Mo | Sb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nanjing | 390 | 255.8 | 121.3 | 4.1 | 28.7 | 65.5 | 8.1 | 32.2 | 281.9 | 7.2 | 4.7 | 6.2 | 1.9 | 18.3 | 68.2 | 9.5 | 2.8 |
Beijing, China (2011), suburban [35] | 1449 | 637 | 2182 | 25 | 21.8 | 35.6 | 20.2 | 10 | 27.8 | 2.9 | 1.1 | 9.8 | 1.1 | 18.4 | 52.9 | 6.5 | 0.6 |
Switzerland (2006), rural [46] | 298 | 48 | 91 | 0.7 | - | 2.8 | 1.2 | 6 | - | 0.53 | 0.16 | - | 0.32 | - | - | - | - |
Cordoba, Argentina (2010), rural [23] | 1928 | - | - | - | - | 95.78 | 5.71 | 5.55 | 17.66 | 1.26 | 0.36 | - | 0.8 | 45.8 | 4.63 | - | - |
Los angles, USA (2009), rural [23] | 66.5 | 30.8 | 107 | 2.36 | 1.48 | 3.76 | 1.23 | 8.93 | 10 | 0.27 | - | 1.16 | 0.09 | 5.44 | 2.52 | 0.45 | 1.08 |
Xi’an, China (2012), urban campus [60] | - | - | - | 68 | 145.4 | 538.9 | 31.2 | 57.4 | 319.5 | 10.2 | - | - | - | 914.6 | 131.8 | - | - |
Ji’nan, China (2010), industrial [58] | - | - | 670 | - | 10 | 110 | 10 | 40 | 440 | 60 | - | 10 | - | 20 | 200 | - | - |
Zhuzhou, China (2012), industrial [33] | - | - | - | - | 115 | - | 35 | 98 | 1140 | 42 | - | - | 10.3 | - | 254 | - | 9.8 |
Oxford, UK (2007), urban [31] | - | - | - | 3.9 | 1.2 | 3.5 | 67.3 | 39.5 | 30 | - | - | 25.4 | 1.06 | - | 186 | 0.4 | - |
Shanghai, China (2012), urban [39] | - | - | - | 10.3 | 27.3 | 60.3 | 10 | 35.5 | 418.5 | 30.8 | - | - | 2.9 | - | 108.5 | - | - |
Mountain XL, China (2012) [29] | 888 | 540 | 323 | 18.9 | 78.6 | 29.4 | 12.9 | 43.7 | 140 | - | 5.09 | - | 11.26 | 33.3 | 57.2 | 1.07 | 21.3 |
S-E Finland (2006), forest [28] | - | 100 | - | 2.7 | - | 7.3 | 1.3 | 2.6 | 20 | 0.85 | - | - | - | - | 13 | - | - |
Venice Lagoon (2002) [59] | 370 | - | 400 | 12 | - | 16 | 14 | 10 | 60 | 3 | - | 2 | 2 | - | 19 | - | - |
Los angles, USA (2009), urban [23] | 41.4 | 11.8 | 46.5 | 3.72 | 1.22 | 1.78 | 1.38 | 9.02 | 8.05 | 0.22 | - | 0.83 | 0.06 | 6.22 | 1.79 | 0.44 | 1.17 |
Summer | Autumn | Winter | Spring | |
---|---|---|---|---|
PM2.5/104 | 8.2 | 16.9 | 16.8 | 11.3 |
Na | 312.73 ± 134.34 | 307.24 ± 44.63 | 395.39 ± 77.93 | 444.79 ± 114.94 |
Mg | 224.21 ± 85.21 | 271.05 ± 66.55 | 262.36 ± 55.66 | 252.37 ± 50.29 |
Al | 140.58 ± 129.15 | 97.74 ± 71.56 | 113.2 ± 51.34 | 87.84 ± 87.42 |
V | 3.48 ± 2.21 | 3.08 ± 1.27 | 4.19 ± 0.99 | 4.77 ± 1.74 |
Cr | 9.84 ± 4.2 | 39.21 ± 2.22 | 39.21 ± 6.97 | 37.81 ± 10.39 |
Mn | 37.97 ± 22.1 | 66.92 ± 23.46 | 70.31 ± 23.23 | 68 ± 33.49 |
Ni | 7.69 ± 3.63 | 7.82 ± 2.61 | 8.76 ± 3.26 | 8.25 ± 4.06 |
Cu | 17.84 ± 9.37 | 52.65 ± 63.88 | 34.58 ± 12.08 | 24.17 ± 11.49 |
Zn | 166.60 ± 68.24 | 363.48 ± 203.79 | 309.99 ± 111.10 | 257.15 ± 212.85 |
As | 2.90 ± 0.92 | 8.95 ± 6.01 | 12.1 ± 4.78 | 4.77 ± 3.1 |
Se | 3.41 ± 1.35 | 5.62 ± 1.85 | 5.48 ± 1.73 | 4.21 ± 1.74 |
Sr | 4.85 ± 2.74 | 6.51 ± 2.92 | 7.55 ± 2.41 | 5.44 ± 2.05 |
Cd | 2.68 ± 1.9 | 2.26 ± 0.72 | 2.52 ± 1.06 | 1.15 ± 0.56 |
Ba | 23.14 ± 14.09 | 18.26 ± 9.11 | 23.06 ± 7.12 | 15.17 ± 6.14 |
Pb | 62.95 ± 31.66 | 76.61 ± 20.66 | 72.19 ± 14.46 | 62.46 ± 24.68 |
Mo | 4.37 ± 3.01 | 7.31 ± 3.85 | 10.06 ± 4.1 | 11.48 ± 12.38 |
Sb | 0.82 ± 0.45 | 2.61 ± 1.45 | 5.71 ± 2.64 | 1.84 ± 1.34 |
Total | 1066.74 | 1356.79 | 1421.77 | 1353.68 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Chen, M.; Ge, X.; Zhang, Y.; Guo, B. Seasonal Variations and Sources of 17 Aerosol Metal Elements in Suburban Nanjing, China. Atmosphere 2016, 7, 153. https://doi.org/10.3390/atmos7120153
Qi L, Chen M, Ge X, Zhang Y, Guo B. Seasonal Variations and Sources of 17 Aerosol Metal Elements in Suburban Nanjing, China. Atmosphere. 2016; 7(12):153. https://doi.org/10.3390/atmos7120153
Chicago/Turabian StyleQi, Lu, Mindong Chen, Xinlei Ge, Yafei Zhang, and Bingfang Guo. 2016. "Seasonal Variations and Sources of 17 Aerosol Metal Elements in Suburban Nanjing, China" Atmosphere 7, no. 12: 153. https://doi.org/10.3390/atmos7120153
APA StyleQi, L., Chen, M., Ge, X., Zhang, Y., & Guo, B. (2016). Seasonal Variations and Sources of 17 Aerosol Metal Elements in Suburban Nanjing, China. Atmosphere, 7(12), 153. https://doi.org/10.3390/atmos7120153