Regional Impact Assessment of Monsoon Variability on Wind Power Availability and Optimization in Asia
Abstract
:1. Introduction
2. Data and Methodology
- -
- Meridional wind component at 10 m and 1000 hPa to 100 hPa
- -
- Zonal wind component at 10 m and 1000 hPa to 100 hPa
- -
- Air temperature at 2 m and 1000 hPa to 100 hPa
- -
- Geopotential height at 1000 hPa to 100 hPa
- -
- Surface pressure
- Cut-in speed: Usually about 3.5 m/s, the cut-in speed is the wind speed at which the turbine is unable to generate any power, as the blades are unable to move. At this speed, the capacity factor is zero.
- Rated speed: Rated speed is the speed range at which the wind turbine is expected to perform optimally, and it is given a capacity factor equivalent to 1. Most turbines have rated speeds from 15 m/s to 25 m/s.
- Cut-out speed: Pegged above 25–30 m/s (5 MW or more above the turbine rating), this is the speed at which the turbine is unable to produce any energy, as the wind speed is too high for the safe and efficient operation of the turbine. The capacity factor above the cut-out speed is equal to zero.
3. Results and Discussion
3.1. Seasonal Monsoon Variation
3.2. Wind Power Distribution and Its Variability
3.3. Wind Speed Distribution and Its Variability
3.4. Annual Variation of Seasonal Wind Power
3.5. Impact on Wind Energy Optimization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International Energy Agency (IEA). World Energy Outlook 2012: Renewable Energy Outlook; International Energy Agency: Paris, France, 2012. [Google Scholar]
- Dunning, C.M.; Turner, A.G.; Brayshaw, D.J. The impact of monsoon intraseasonal variability on renewable power generation in India. Environ. Res. Lett. 2015, 10, 064002. [Google Scholar] [CrossRef]
- Reddy, B.S.; Assenza, G.B.; Assenza, D.; Hasselmann, F. Energy Efficiency and Climate Change: Conserving Power for a Sustainable Future; SAGE: New Delhidoi, India, 2009. [Google Scholar]
- Hendricks, B. Climate Leader Papers: Decarbonization—The Time Is Now. Available online: http://www.climateactionprogramme.org/climate-leader-papers/decarbonisation_the_time_is_now (accessed on 10 May 2017).
- Barros, K.J.; Mach, M.D.; Mastrandrea, M.; van Aalst, W.N.; Adger, D.J.; Arent, J.; Barnett, R.; Betts, T.E.; Bilir, J.; Birkmann, J.; et al. Technical summary. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 35–94. [Google Scholar]
- Global Installed Wind Power Capacity in 2016—Regional Distribution. Available online: http://gwec.net/global-figures/graphs/ (accessed on 4 October 2017).
- Brayshaw, D.J.; Troccoli, A.; Fordham, R.; Methven, J. The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: A case study over the UK. Renew. Energy 2011, 36, 2087–2096. [Google Scholar] [CrossRef]
- Vincent, C.; Kepert, J. Using kinetic energy spectra from NWP to forecast wind variability. BMRC Res. Lett. 2008, 8, 27. [Google Scholar]
- Davy, R.J.; Woods, M.J.; Russell, C.J.; Coppin, P.A. Statistical downscaling of wind variability from meteorological fields. Bound. Layer Meteorol. 2010, 135, 161–175. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Climate and Dynamics-D12110-Evaluation of global wind power. J. Geophys. Res. Part D Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Thornton, H.E.; Scaife, A.A.; Hoskins, B.J.; Brayshaw, D.J. The relationship between wind power, electricity demand and winter weather patterns in Great Britain. Environ. Res. Lett. 2017, 12, 064017. [Google Scholar] [CrossRef]
- Clark, R.T.; Bett, P.E.; Thornton, H.E.; Scaife, A.A. Skilful seasonal predictions for the European energy industry. Environ. Res. Lett. 2017, 12, 024002. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Bian, X.; Heilman, W.E. Climatology and trend of wind power resources in China and its surrounding regions: A revisit using Climate Forecast System Reanalysis data. Int. J. Climatol. 2016, 36, 2173–2188. [Google Scholar] [CrossRef]
- Ramage, C.S. Monsoon meteorology. Int. Geophys. Serv. 1971, 15, 296. [Google Scholar]
- Wu, M.L.C.; Schubert, S.; Huang, N.E. The development of the South Asian summer monsoon and the intraseasonal oscillation. J. Clim. 1999, 12, 2054–2075. [Google Scholar] [CrossRef]
- Xu, J.; Chan, J.C. First transition of the Asian summer monsoon in 1998 and the effect of the Tibet-tropical Indian Ocean thermal contrast. J. Meteorol. Soc. Jpn. 2001, 79, 241–253. [Google Scholar] [CrossRef]
- Zhou, T.; Gong, D.; Li, J.; Li, B. Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—Recent progress and state of affairs. Meteorol. Z. 2009, 18, 455–467. [Google Scholar] [CrossRef]
- Wang, S.W.; Li, W. Climate of China; China Meteor Press: Beijing, China, 2007; 428p. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Climate change impacts on wind energy: A review. Renew. Sustain. Energy Rev. 2010, 14, 430–437. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Terrados, J.; Perez-Higueras, P.; Pozo-Vazquez, A. Assessment of the renewable energies potential for intensive electricity production in the province of Jaen, southern Spain. Renew. Sustain. Energy Rev. 2012, 16, 2994–3001. [Google Scholar] [CrossRef]
- Cannon, D.J.; Brayshaw, D.J.; Methven, J.; Coker, P.J.; Lenaghan, D. Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain. Renew. Energy 2015, 75, 767–778. [Google Scholar] [CrossRef]
- Zhou, W.; Chan, J.C.L. Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. Climatol. 2005, 25, 1585–1609. [Google Scholar] [CrossRef]
- Zhang, Z.; Chan, J.C.; Ding, Y. Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. Int. J. Climatol. 2004, 24, 1461–1482. [Google Scholar] [CrossRef]
- Fong, S.K.; Wang, A.Y. Climatological Atlas for Asian Summer Monsoon; Macau Meteorological and Geophysical Bureau and Macau Foundation: Macau, China, 2011; p. 318. [Google Scholar]
- Ding, Y.H. Seasonal march of the East-Asian summer monsoon. East Asian Monsoon 2004, 2, e53. [Google Scholar]
- Ding, Y.H. Monsoons over China; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; 419p. [Google Scholar]
- Ding, Y.H.; Sun, Y. A study on anomalous activities of East Asian summer monsoon during 1999. J. Meteorol. Soc. Jpn. 2001, 79, 1119–1137. [Google Scholar] [CrossRef]
- Cressman, G.P. Circulations of the West Pacific jet stream. Mon. Weather Rev. 1981, 109, 2450–2463. [Google Scholar] [CrossRef]
- Chang, C.P.; Lau, K.M.W. Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Weather Rev. 1980, 110, 933–946. [Google Scholar] [CrossRef]
- Ding, Y.H. Effects of the Qinghai-Xizang (Tibet) plateau on the circulation features over the plateau and its surrounding areas. Adv. Atmos. Sci. 1992, 9, 112–130. [Google Scholar]
- Chen, L.X.; Schmidt, F.; Li, W. Characteristics of the atmospheric heat source and moisture sink over the Qinghai-Tibetan Plateau during the second TIPEX of summer 1998 and their impact on surrounding monsoon. Meteorol. Atmos. Phys. 2003, 83, 1–18. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, L.X. Impact of quasi-four year oscillation of atmospheric heat source/sink over Qinghai-Tibetian Plateau in winter on the interaction among ocean-land and atmosphere. China Sci. Bull. 2000, 45, 1666–1671. [Google Scholar]
- Yeh, T.C.; Luo, S.W.; Zhu, B.Z. Structure of the flow field over the Tibetan Plateau and the adjacent area and heat balance of the tropospheric atmosphere. Acta Meteorol. Sin. 1957, 28, 108–120. (In Chinese) [Google Scholar]
- Lu, L.; Yang, H.; Burnett, J. Investigation on wind power potential on Hong Kong islands—An analysis of wind power and wind turbine characteristics. Renew. Energy 2002, 27, 1–12. [Google Scholar] [CrossRef]
- Li, G. Feasibility of large scale offshore wind power for Hong Kong—A preliminary study. Renew. Energy 2000, 21, 387–402. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abolude, A.T.; Zhou, W.; Leung, Y.T. Regional Impact Assessment of Monsoon Variability on Wind Power Availability and Optimization in Asia. Atmosphere 2017, 8, 219. https://doi.org/10.3390/atmos8110219
Abolude AT, Zhou W, Leung YT. Regional Impact Assessment of Monsoon Variability on Wind Power Availability and Optimization in Asia. Atmosphere. 2017; 8(11):219. https://doi.org/10.3390/atmos8110219
Chicago/Turabian StyleAbolude, Akintayo T., Wen Zhou, and Yu Ting Leung. 2017. "Regional Impact Assessment of Monsoon Variability on Wind Power Availability and Optimization in Asia" Atmosphere 8, no. 11: 219. https://doi.org/10.3390/atmos8110219
APA StyleAbolude, A. T., Zhou, W., & Leung, Y. T. (2017). Regional Impact Assessment of Monsoon Variability on Wind Power Availability and Optimization in Asia. Atmosphere, 8(11), 219. https://doi.org/10.3390/atmos8110219