Long-Range Transport of Water Channelized through the Southern Subtropical Jet
Abstract
:1. Introduction
2. Cirrus Clouds Observations
2.1. Ground-Based Lidars
2.1.1. MSP-Lidar at São Paulo
2.1.2. Rayleigh Lidar at Réunion Island
2.1.3. Methodology of Cirrus Cloud Detection
2.1.4. Cirrus Observations from São Paulo and Réunion Island (June 2007)
2.2. CALIPSO Plataform
3. Transport of Cirrus Air Masses
3.1. Trajectory Analyses
3.2. Source of Moist Air
3.3. Transport from São Paulo
4. CALIPSO Cloud Signature and Tracking of Air Masses
5. Estimating Ice Crystal Sedimentation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forster, P.M.; Shine, K.P. Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett. 2002, 29, 1086. [Google Scholar] [CrossRef]
- Jensen, E.J.; Toon, O.G.; Westphal, D.L.; Kinne, S.; Heymsfield, A.J. Mycrophysical modelling of cirrus. Part I: Comparison with 1986 FIRE IFO measurements. J. Geophys. Res. 1994, 99, 10421–10442. [Google Scholar] [CrossRef]
- Homeyer, C.R.; Pan, L.L.; Dorsi, S.W.; Avallone, L.M.; Weinheimer, A.J.; O’Brien, A.S.; DiGangi, J.P.; Zondlo, M.A.; Ryerson, T.B.; Diskin, G.S.; et al. Convective transport of water vapor into the lower stratosphere observed during double-tropopause events. J. Geophys. Res. Atmos. 2014, 119, 10941–10958. [Google Scholar] [CrossRef]
- Fujita, T.T. Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteorol. Soc. Jpn. 1982, 60, 355–368. [Google Scholar] [CrossRef]
- Adler, R.F.; Markus, M.J.; Fenn, D.D.; Szejwach, G.; Shenk, W.E. Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Clim. Appl. Meteorol. 1983, 22, 579–593. [Google Scholar] [CrossRef]
- Levizzani, V.; Setvák, M. Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci. 1996, 53, 361–369. [Google Scholar] [CrossRef]
- Wang, P.K. Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res. 2003, 108, 4194. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Dessler, A.E.; Dunkerton, T.J.; Folkins, I.; Fu, Q.; Mote, P.W. Tropical tropopause layer. Rev. Geophys. 2009, 47, RG1004. [Google Scholar] [CrossRef]
- Pommereau, J.-P.; Garnier, A.; Held, G.; Gomes, A.M.; Goutail, F.; Durry, G.; Borchi, F.; Hauchecorne, A.; Montoux, N.; Cocqurez, P.; et al. An overview of the HIBISCUS campaign. Atmos. Chem. Phys. 2011, 11, 2309–2339. [Google Scholar] [CrossRef] [Green Version]
- Wielicki, B.A.; Wong, T.M.; Allan, R.P.; Slingo, A.; Kiehl, J.T.; Soden, B.J.; Gordon, C.T.; Miller, A.J.; Yang, S.K.; Randall, D.A.; et al. Evidence for large decadal variability in the tropical mean radiative energy budget. Science 2002, 295, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Comstock, J.M.; Jakob, C. Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground-based measurements over Nauru Island. Geophys. Res. Lett. 2004, 31, L10106. [Google Scholar] [CrossRef]
- Mitchell, D.L.; Rasch, P.; Ivanova, D.; McFarquhar, G.; Nousiainen, T. Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett. 2008, 35, L09806. [Google Scholar] [CrossRef]
- Larroza, E.G.; Nakaema, W.M.; Bourayou, R.; Hoareau, C.; Landulfo, E.; Keckhut, P. Towards an automatic lidar cirrus cloud retrieval for climate studies. Atmos. Meas. Tech. 2013, 6, 3197–3210. [Google Scholar] [CrossRef] [Green Version]
- Haase, J.S.; Alexander, M.J.; Hertzog, A.; Kalnais, L.; Deshler, T.; Davis, S.M.; Plougonyen, R.; Cocquerez, P.; Venel, S. Around the World in 84 Days; Eos; Collector’s Guide Publishing: Burlington, MA, USA, 2018; p. 99. [Google Scholar]
- Dionisi, D.; Keckhut, P.; Hoareau, C.; Montoux, N.; Congeduti, F. Cirrus crystal fall velocity estimated using the match method with ground-based lidars: A first case study. Atmos. Meas. Tech. 2013, 6, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Landulfo, E.; Papayannis, A.; Artaxo, P.; Castanho, A.D.A.; de Freitas, A.Z.; Souza, R.F.; Vieira Junior, N.D.; Jorge, M.P.; S’anchez-Ccoyllo, O.R.; Moreira, D.S. Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during dry season. Atmos. Chem. Phys. 2003, 5, 1523–1539. [Google Scholar] [CrossRef] [Green Version]
- Baray, J.-L.; Leveau, J.; Baldy, S.; Jouzel, J.; Keckhut, P.; Bergametti, G.; Ancellet, G.; Bencherif, H.; Cadet, B.; Carleer, M.; et al. An instrumented station for the survey of ozone and climate change in the southern tropics: Scientific motivation, technical description and future plans. J. Environ. Monit. 2006, 8, 1–9. [Google Scholar] [CrossRef]
- Cadet, B.; Goldfarb, L.; Faduilhe, D.; Baldy, S.; Giraud, V.; Keckhut, P.; Rechou, A. A sub-tropical cirrus cloud climatology from Reunion island (21° S, 66° E) lidar data set. Geophys. Res. Lett. 2003, 30, 1130. [Google Scholar] [CrossRef]
- Baray, J.-L.; Courcoux, Y.; Keckhut, P.; Portafaix, T.; Tulet, P.; Cammas, J.-P.; Hauchecorne, A.; Beekmann, S.G.; De Mazière, M.; Hermans, C.; et al. Maïdo observatory: A new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements. Atmos. Meas. Tech. 2013, 6, 2865–2877. [Google Scholar] [CrossRef] [Green Version]
- Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt. 1995, 34, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Garnier, A.; Pelon, J.; Dubuisson, P.; Faivre, M.; Chomette, O.; Pascal, N.; Kratz, D.P. Retrieval of cloud properties using CALIPSO Imaging Infrared Radiometer. Part I: Effective emissivity and optical depth. J. Appl. Meteorol. Climatol. 2012, 51, 1407–1425. [Google Scholar] [CrossRef]
- Vaughan, M.A.; Winker, D.M.; Powell, K.A. Fully automated detection of cloud and aerosol layer in the CALIPSO lidar measurements. J. Atmos. Ocean. Technol. 2009, 26, 2034–2050. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, Y.; Li, R.; Qin, F.; Xian, T.; Yu, L.; Zhang, A.; Liu, G.; Zhang, X. Lateral Boundary of Cirrus Cloud from CALIPSO Observations. Nat. Sci. Rep. 2017, 7, 14221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Omar, A.H.; Hu, Y.; Vaughan, M.A.; Winker, D.M. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Ocean. Technol. 2009, 26, 1198–1213. [Google Scholar] [CrossRef]
- Anselmo, T.; Clifton, R.; Hunt, W.; Lee, K.-P.; Murray, T.; Powell, K.; Rodier, S.D.; Vaughan, M.; Chomette, O.; Viollier, M.; et al. Cloud-Aerosol LIDAR Infrared Pathfinder Satellite Observations Data Management System and Data Product Catalog; CALIPSO Algorithm Theoretical Basis Document, Document No: PC-SCI-503; National Aeronautics and Space Administration Langley Research Center: Hampton, VA, USA, 2007; p. 100.
- Clain, G.; Baray, J.-L.; Delmas, R.; Keckhut, P.; Cammas, J.-P. A lagrangian approach to analyse the tropospheric ozone climatology in the tropics: Climatology of Stratosphere—Troposphere exchange at Reunion Island. Atmos. Environ. 2010, 44, 968–975. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zimmermann, D.F.R. Subtropical Jet Climatology over South America. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Escobar, G. Jatos de Altos Níveis. In Tempo e Clima no Brasil; de Cavalcanti, I.F.A., Ferreira, N.J., da Silva, M.G.A.J., Dias, M.A.F.S., Eds.; Oficina de Textos: São Paulo, Brazil, 2009; pp. 127–134. ISBN 978-85-86238-92-5. [Google Scholar]
- Thompson, D.W.J.; Wallace, J.M. Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability. J. Clim. 1999, 13, 1000–1016. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z. Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett. 2008, 35, L04805. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.E.; Liu, D. Cirrus clouds a deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res. 2009, 114, D00H06. [Google Scholar] [CrossRef]
- Vérèmes, H.; Cammas, J.-P.; Baray, J.-L.; Keckhut, P.; Barthe, C.; Posny, F.; Tulet, P.; Dionisi, D.; Bielli, S. Multiple subtropical stratospheric intrusions over Reunion Island: Observational, lagrangian, and eulerian numerical modeling approaches. J. Geophys. Res. Atmos. 2016, 121, 14414–14432. [Google Scholar] [CrossRef]
- Montoux, N.; Keckhut, P.; Hauchecorne, A.; Jumelet, J.; Brogniez, H.; David, C. Isentropic modeling of a cirrus cloud event observed in the midlatitude upper troposphere and lower stratosphere. J. Geophys. Res. 2010, 115, D02202. [Google Scholar] [CrossRef]
- Starr, D.O.C.; Cox, S.K. Cirrus Clouds, Part I: A Cirrus Cloud Model. Am. Meteorol. Soc. 1985, 42, 2663–2681. [Google Scholar] [CrossRef]
- Spichtinger, P.; Gierens, K.; Lohmann, U. Importance of a proper treatment of ice crystal sedimentation for cirrus clouds in large-scale models. In Proceedings of the AMS 12th Cloud Physics, Madison, WI, USA, 10–14 July 2006. [Google Scholar]
- Karcher, B. Properties of subvisible cirrus clouds formed by homogeneous freezing. Atmos. Chem. Phys. 2002, 2, 161–170. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larroza, E.G.; Keckhut, P.; Baray, J.-L.; Nakaema, W.M.; Vérèmes, H.; Landulfo, E.; Dionisi, D.; Khaykin, S.; Ravetta, F. Long-Range Transport of Water Channelized through the Southern Subtropical Jet. Atmosphere 2018, 9, 374. https://doi.org/10.3390/atmos9100374
Larroza EG, Keckhut P, Baray J-L, Nakaema WM, Vérèmes H, Landulfo E, Dionisi D, Khaykin S, Ravetta F. Long-Range Transport of Water Channelized through the Southern Subtropical Jet. Atmosphere. 2018; 9(10):374. https://doi.org/10.3390/atmos9100374
Chicago/Turabian StyleLarroza, Eliane G., Philippe Keckhut, Jean-Luc Baray, Walter M. Nakaema, Hélène Vérèmes, Eduardo Landulfo, Davide Dionisi, Sergey Khaykin, and François Ravetta. 2018. "Long-Range Transport of Water Channelized through the Southern Subtropical Jet" Atmosphere 9, no. 10: 374. https://doi.org/10.3390/atmos9100374
APA StyleLarroza, E. G., Keckhut, P., Baray, J. -L., Nakaema, W. M., Vérèmes, H., Landulfo, E., Dionisi, D., Khaykin, S., & Ravetta, F. (2018). Long-Range Transport of Water Channelized through the Southern Subtropical Jet. Atmosphere, 9(10), 374. https://doi.org/10.3390/atmos9100374