Characteristics and Source Apportionment of Summertime Volatile Organic Compounds in a Fast Developing City in the Yangtze River Delta, China
Abstract
:1. Introduction
2. Methods
2.1. VOC Sampling
2.2. Analytic Methods
2.3. Positive Matrix Factorization (PMF) Receptor Model
3. Results and Discussion
3.1. Characteristics of VOC Species
3.2. Ozone and SOA Formation Potential
3.3. Source Apportionment of VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kim, Y.M.; Harrad, S.; Harrison, R.M. Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ. Sci. Technol. 2001, 35, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Derwent, R. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions. J. Air Waste Manag. Assoc. 2017, 67, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Malley, C.S.; Barban, C.F.; Dumitrean, P.; Cape, J.N.; Heal, M.R. The impact of speciated VOCs on regional ozone increment derived from measurements at the UK EMEP supersites between 1999 and 2012. Atmos. Chem. Phys. 2015, 15, 8361–8380. [Google Scholar] [CrossRef] [Green Version]
- Mazzuca, G.M.; Ren, X.; Loughner, C.P.; Estes, M.; Crawford, J.H. Ozone production and its sensitivity to NOx and VOCs: Results from the DISCOVER-AQ field experiment, Houston 2013. Atmos. Chem. Phys. 2016, 16, 14463–14474. [Google Scholar] [CrossRef]
- Zhang, J.; Dabek-Zlotorzynska, E.; Liggio, J.; Stroud, C.A.; Charland, J.P.; Brook, J.R. Use of the integrated organic gas and particle sampler to improve the characterization of carbonaceous aerosol in the near-road environment. Atmos. Environ. 2016, 126, 192–199. [Google Scholar] [CrossRef]
- Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 2007, 315, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Ait-Helal, W.; Borbon, A.; Sauvage, S.; de Gouw, J.A.; Colomb, A.; Gros, V.; Freutel, F.; Crippa, M.; Afif, C.; Baltensperger, U.; et al. Volatile and intermediate volatility organic compounds in suburban Paris: Variability, origin and importance for SOA formation. Atmos. Chem. Phys. 2014, 14, 10439–10464. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.J.; Beekmann, M.; Drewnick, F.; Freutel, F.; Schneider, J.; Crippa, M.; Prevot, A.S.H.; Baltensperger, U.; Poulain, L.; Wiedensohler, A.; et al. Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: Evaluation of the volatility basis-set approach within the CHIMERE model. Atmos. Chem. Phys. 2013, 13, 5767–5790. [Google Scholar] [CrossRef]
- Sun, J.; Wu, F.; Hu, B.; Tang, G.; Zhang, J.; Wang, Y. VOC characteristics, emissions and contributions to SOA formation during hazy episodes. Atmos. Environ. 2016, 141, 560–570. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; An, J.Y.; Shi, Y.Y.; Zhou, M.; Yan, R.S.; Huang, C.; Wang, H.L.; Lou, S.R.; Wang, Q.; Lu, Q.; et al. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013. Atmos. Environ. 2016, 144, 194–207. [Google Scholar] [CrossRef]
- Jin, X.; Holloway, T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. J. Geophys. Res. Atmos. 2015, 120, 7229–7246. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhao, Y.; Mao, P.; Zhang, Q.; Zhang, J.; Qiu, L.; Yang, Y. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China. Atmos. Chem. Phys. 2017, 17, 211–233. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, P.; Zhou, Y.; Yang, Y.; Zhang, J.; Wang, S.; Dong, Y.; Xie, F.; Yu, Y.; Li, W. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: A case study for Jiangsu. China Atmos. Chem. Phys. 2017, 17, 7733–7756. [Google Scholar] [CrossRef]
- An, J.; Zhu, B.; Wang, H.; Li, Y.; Lin, X.; Yang, H. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 2014, 97, 206–214. [Google Scholar] [CrossRef]
- Huang, C.; Chen, C.H.; Li, L.; Cheng, Z.; Wang, H.L.; Huang, H.Y.; Streets, D.G.; Wang, Y.J.; Zhang, G.F.; Chen, Y.R. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China. Atmos. Chem. Phys. 2011, 11, 4105–4120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xie, S.D.; Zeng, L.M.; Li, L.Y.; Li, Y.Q.; Wu, R.R. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmos. Chem. Phys. 2015, 15, 7945–7959. [Google Scholar] [CrossRef]
- Bo, Y.; Cai, H.; Xie, S.D. Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmos. Chem. Phys. 2008, 8, 7297–7316. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Shao, M.; Chen, W.; Yuan, B.; Lu, S.; Zhang, Q.; Zeng, L.; Wang, Q. A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China. Atmos. Chem. Phys. 2014, 14, 5871–5891. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Zheng, J.; Li, R.; Huang, X.; Zhong, Z.; Zhong, L.; Lin, H. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Sci. Total Environ. 2015, 530–531, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Louie, P.K.K.; Ho, J.W.K.; Tsang, R.C.W.; Blake, D.R.; Lau, A.K.H.; Yu, J.Z.; Yuan, Z.; Wang, X.; Shao, M.; Zhong, L. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmos. Environ. 2013, 76, 125–135. [Google Scholar] [CrossRef]
- Zheng, J.; Chang, M.; Xie, H.; Guo, P. Exploring the spatiotemporal characteristics and control strategies for volatile organic compound emissions in Jiangsu, China. J. Clean. Prod. 2016, 127, 249–261. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Zeng, L.; Wu, R.; Li, J. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2015, 113, 247–254. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, J.; Chen, G. Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos. Chem. Phys. 2008, 8, 1531–1545. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Wang, J.; Zhang, Y.; Zhu, B. Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China. Arch. Environ. Contam. Toxicol. 2017, 72, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Zhao, C.; Geng, F.; Tie, X.; Tang, X.; Peng, L.; Zhou, G.; Yu, Q.; Xu, J.; Guenther, A. Ozone photochemical production in urban Shanghai, China: Analysis based on ground level observations. J. Geophys. Res. 2009, 114, D15301. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by GC/MS. 1999. Available online: http://www.epa.gov/ttnamti1/files/ambient/airtox/to-15r.pdf (accessed on 1 August 2018).
- Paatero, P.; Tapper, U. Positive matrix factorization: A non negativefactor model with optimal utilization of error estimates of data values. Envirometrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Barletta, B.; Meinardi, S.; Rowland, F.S.; Chan, C.; Wang, X.; Zou, S.; Chan, L.Y.; Blake, D. Volatile organic compounds in 43 Chinese cities. Atmos. Environ. 2005, 39, 5979–5990. [Google Scholar] [CrossRef]
- Xia, L.; Cai, C.; Zhu, B.; An, J.; Li, Y.; Li, Y. Source apportionment of VOCs in a suburb of Nanjing, China, in autumn and winter. J. Atmos. Chem. 2014, 71, 175–193. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.C.; Wang, J.L.; Fu, L. Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmos. Environ. 2008, 42, 6261–6274. [Google Scholar] [CrossRef]
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Zhang, X.M.; Xue, Z.; Li, H.; Yan, L.; Yang, Y.; Wang, Y.; Duan, J.; Li, L.; Chai, F.; Cheng, M.; et al. Ambient volatile organic compounds pollution in China. J. Environ. Sci. 2017, 55, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Carter, W.P. Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manag. Assoc. 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Grosjean, D. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality. Atmos. Environ. 1992, 26, 953–963. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Zhang, Q.; Zhang, Y.; Zhang, W.; Wang, X.; Bi, F.; Chai, F.; Gao, J.; Meng, L.; et al. Atmospheric volatile organic compounds in a typical urban area of Beijing: Pollution characterization, health risk assessment and source apportionment. Atmosphere 2017, 8, 61. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, Y.; Chen, C.; Lu, J.; Dai, H.; Qiao, L.; Lou, S.; Huang, C.; Li, L.; Jing, S.; et al. Source profiles and chemical reactivity of volatile organic compounds from solvent use in Shanghai, China. Aerosol Air Qual. Res. 2014, 14, 301–310. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.B.; Hopke, P.K.; Yi, S.M. Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 2009, 9, 4957–4971. [Google Scholar] [CrossRef]
- Song, Y.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P.; Xie, S. Source apportionment of ambient volatile organic compounds in Beijing. Environ. Sci. Technol. 2007, 41, 4348–4353. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.C.; Aklilu, Y.A.; Brown, S.G.; Lyder, D.A. Source apportionment of volatile organic compounds measured in Edmonton, Alberta. Atmos. Environ. 2013, 81, 504–516. [Google Scholar] [CrossRef]
- Choi, Y.J.; Ehrman, S.H. Investigation of sources of volatile organic carbon in the Baltimore area using highly time-resolved measurements. Atmos. Environ. 2004, 38, 775–791. [Google Scholar] [CrossRef]
- Zhong, Z.; Sha, Q.; Zheng, J.; Yuan, Z.; Gao, Z.; Ou, J.; Zheng, Z.; Li, C.; Huang, Z. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China. Sci. Total Environ. 2017, 583, 19–28. [Google Scholar] [CrossRef] [PubMed]
Site | OFP (μg/m3) | SOAFP (μg/m3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Alkanes | Alkenes | Acetylene | Aromatics | Ketones | Alcohols | Total | Alkanes | Aromatics | Total | |
HQ | 25.27 | 37.53 | 1.30 | 51.46 | 3.97 | 3.43 | 122.96 | 0.01 | 0.74 | 0.75 |
ST | 26.84 | 39.10 | 1.19 | 46.01 | 3.59 | 3.44 | 120.17 | 0.01 | 0.61 | 0.62 |
XH | 29.41 | 26.72 | 1.22 | 42.44 | 3.75 | 5.65 | 109.18 | 0.01 | 0.64 | 0.65 |
SQ | 31.23 | 37.18 | 1.26 | 55.57 | 1.77 | 1.05 | 128.07 | 0.01 | 0.76 | 0.77 |
ZL | 32.38 | 29.29 | 1.30 | 75.16 | 5.54 | 2.84 | 146.51 | 0.01 | 0.99 | 1.00 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | Factor 7 | Factor 8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conc. | % | Conc. | % | Conc. | % | Conc. | % | Conc. | % | Conc. | % | Conc. | % | Conc. | % | |
Ethane | 0.00 | 0 | 0.00 | 0 | 1.76 | 61 | 0.34 | 12 | 0.76 | 27 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 |
Propane | 1.12 | 41 | 0.00 | 0 | 0.31 | 11 | 0.00 | 0 | 0.37 | 14 | 0.04 | 2 | 0.53 | 19 | 0.37 | 14 |
N-butane | 0.12 | 12 | 0.02 | 2 | 0.03 | 3 | 0.18 | 18 | 0.15 | 14 | 0.07 | 7 | 0.34 | 33 | 0.13 | 12 |
Isobutane | 0.10 | 19 | 0.00 | 0 | 0.01 | 1 | 0.00 | 0 | 0.13 | 24 | 0.08 | 14 | 0.18 | 34 | 0.04 | 8 |
N-pentane | 0.05 | 3 | 0.00 | 0 | 0.09 | 5 | 0.96 | 54 | 0.00 | 0 | 0.67 | 38 | 0.00 | 0 | 0.00 | 0 |
Isopentane | 0.00 | 0 | 0.07 | 7 | 0.10 | 11 | 0.19 | 22 | 0.00 | 0 | 0.00 | 0 | 0.40 | 46 | 0.12 | 14 |
N-hexane | 0.02 | 7 | 0.03 | 8 | 0.00 | 1 | 0.02 | 5 | 0.14 | 45 | 0.01 | 4 | 0.05 | 17 | 0.04 | 13 |
2-methylhexane | 0.03 | 17 | 0.02 | 13 | 0.02 | 12 | 0.00 | 0 | 0.03 | 17 | 0.03 | 15 | 0.03 | 16 | 0.02 | 10 |
Cyclopentane | 0.02 | 11 | 0.00 | 0 | 0.01 | 6 | 0.04 | 25 | 0.02 | 14 | 0.04 | 21 | 0.03 | 19 | 0.01 | 4 |
2,3-dimethylpentane | 0.04 | 26 | 0.01 | 4 | 0.02 | 11 | 0.02 | 15 | 0.01 | 7 | 0.04 | 25 | 0.02 | 11 | 0.00 | 1 |
3-methylheptane | 0.02 | 14 | 0.02 | 14 | 0.01 | 9 | 0.03 | 19 | 0.00 | 2 | 0.04 | 25 | 0.02 | 11 | 0.01 | 5 |
N-octane | 0.09 | 33 | 0.05 | 18 | 0.03 | 12 | 0.08 | 29 | 0.02 | 6 | 0.00 | 0 | 0.01 | 2 | 0.00 | 0 |
Propylene | 0.35 | 45 | 0.15 | 19 | 0.02 | 3 | 0.16 | 21 | 0.08 | 10 | 0.01 | 1 | 0.00 | 0 | 0.01 | 2 |
N-butene | 0.03 | 17 | 0.01 | 6 | 0.00 | 0 | 0.01 | 4 | 0.04 | 21 | 0.04 | 20 | 0.05 | 30 | 0.00 | 3 |
1-pentene | 0.04 | 21 | 0.03 | 16 | 0.05 | 25 | 0.04 | 23 | 0.00 | 0 | 0.00 | 0 | 0.03 | 14 | 0.00 | 0 |
Acetylene | 0.46 | 22 | 0.19 | 9 | 0.28 | 13 | 0.00 | 0 | 0.39 | 18 | 0.32 | 15 | 0.44 | 21 | 0.05 | 2 |
benzene | 0.02 | 5 | 0.00 | 0 | 0.03 | 9 | 0.14 | 42 | 0.03 | 9 | 0.00 | 0 | 0.04 | 13 | 0.07 | 21 |
Toluene | 0.00 | 0 | 0.06 | 7 | 0.00 | 0 | 0.21 | 26 | 0.06 | 7 | 0.00 | 0 | 0.04 | 4 | 0.46 | 56 |
P-xylene | 0.01 | 2 | 0.07 | 24 | 0.00 | 0 | 0.05 | 18 | 0.00 | 0 | 0.02 | 6 | 0.03 | 9 | 0.12 | 41 |
Ethylbenzene | 0.02 | 9 | 0.00 | 0 | 0.04 | 19 | 0.00 | 0 | 0.00 | 0 | 0.02 | 10 | 0.03 | 14 | 0.11 | 48 |
M-xylene | 0.03 | 23 | 0.01 | 6 | 0.03 | 22 | 0.00 | 0 | 0.03 | 18 | 0.01 | 9 | 0.00 | 0 | 0.03 | 22 |
O-xylene | 0.02 | 13 | 0.01 | 6 | 0.03 | 21 | 0.00 | 1 | 0.01 | 7 | 0.02 | 13 | 0.01 | 9 | 0.05 | 29 |
acetone | 0.00 | 0 | 0.12 | 7 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 1.60 | 93 | 0.00 | 0 | 0.00 | 0 |
Dichloromethane | 0.08 | 11 | 0.39 | 53 | 0.11 | 15 | 0.00 | 0 | 0.00 | 0 | 0.09 | 12 | 0.07 | 9 | 0.00 | 0 |
Ethyl acetate | 0.00 | 0 | 0.41 | 69 | 0.04 | 7 | 0.00 | 0 | 0.01 | 2 | 0.00 | 0 | 0.00 | 0 | 0.13 | 22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, Y.; Zhao, Q.; Shen, G.; Liu, Q.; Li, C.; Zhou, D.; Wang, S. Characteristics and Source Apportionment of Summertime Volatile Organic Compounds in a Fast Developing City in the Yangtze River Delta, China. Atmosphere 2018, 9, 373. https://doi.org/10.3390/atmos9100373
Zhang J, Zhao Y, Zhao Q, Shen G, Liu Q, Li C, Zhou D, Wang S. Characteristics and Source Apportionment of Summertime Volatile Organic Compounds in a Fast Developing City in the Yangtze River Delta, China. Atmosphere. 2018; 9(10):373. https://doi.org/10.3390/atmos9100373
Chicago/Turabian StyleZhang, Jie, Yu Zhao, Qiuyue Zhao, Guofeng Shen, Qian Liu, Chunyan Li, Derong Zhou, and Shekou Wang. 2018. "Characteristics and Source Apportionment of Summertime Volatile Organic Compounds in a Fast Developing City in the Yangtze River Delta, China" Atmosphere 9, no. 10: 373. https://doi.org/10.3390/atmos9100373
APA StyleZhang, J., Zhao, Y., Zhao, Q., Shen, G., Liu, Q., Li, C., Zhou, D., & Wang, S. (2018). Characteristics and Source Apportionment of Summertime Volatile Organic Compounds in a Fast Developing City in the Yangtze River Delta, China. Atmosphere, 9(10), 373. https://doi.org/10.3390/atmos9100373