PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region
Abstract
:1. Introduction
2. Methodology
2.1. Field Measurement
2.2. Photochemical Box Model Incorporating the Master Chemical Mechanism (PBM-MCM)
2.3. Description and Configuration of Community Multiscale Air Quality (CMAQ) Model
3. Results and Discussion
3.1. General Statistics
3.2. Dynamic Processes for PAN Abundance
3.3. The PAN–Precursor Relationship
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Vyskocil, A.; Viau, C.; Lamy, S. Peroxyacetyl nitrate: Review of toxicity. Hum. Exp. Toxicol. 1998, 17, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.B.; Salas, L.J.; Viezee, W. Global distribution of peroxyacetyl nitrate. Nature 1986, 321, 588–591. [Google Scholar] [CrossRef] [PubMed]
- LaFranchi, B.W.; Wolfe, G.M.; Thornton, J.A.; Harrold, S.A.; Browne, E.C.; Min, K.E.; Wooldridge, P.J.; Gilman, J.B.; Kuster, W.C.; Goldan, P.D.; et al. Closing the peroxy acetyl nitrate budget: Observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmos. Chem. Phys. 2009, 9, 7623–7641. [Google Scholar] [CrossRef]
- Marley, N.; Gaffney, J.; Ramos-Villegas, R.; Cárdenas González, B. Comparison of measurements of peroxyacyl nitrates and primary carbonaceous aerosol of concentrations in Mexico City determined in 1997 and 2003. Atmos. Chem. Phys. 2007, 7, 2277–2285. [Google Scholar] [CrossRef]
- Rubio, M.A.; Oyola, P.; Gramsch, E.; Lissi, E.; Pizarro, J.; Villena, G. Ozone and peroxyacetylnitrate in downtown Santiago, Chile. Atmos. Environ. 2004, 38, 4931–4939. [Google Scholar] [CrossRef]
- Zellweger, C.; Forrer, J.; Hofer, P.; Nyeki, S.; Schwarzenbach, B.; Weigartner, E.; Ammann, M.; Baltensperger, U. Partitioning of reactive nitrogen (NOy) and dependence on meteorological conditions in the lower free troposphere. Atmos. Chem. Phys. 2002, 2, 2259–2296. [Google Scholar] [CrossRef]
- Zhang, J.M.; Wang, T.; Ding, A.J.; Zhou, X.H.; Xue, L.K.; Poon, C.N.; Wu, W.S.; Gao, J.; Zuo, H.C.; Chen, J.M.; et al. Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China. Atmos. Environ. 2009, 43, 228–237. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.H.; Gu, D.S.; Zhao, C.; Huey, L.G.; Stickel, R.; Liao, J.; Shao, M.; Zhu, T.; Zeng, L.M. Evidence of reactive aromatics as a major source of peroxy acetyl nitrate over China. Environ. Sci. Technol. 2010, 44, 7017–7022. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.K.; Wang, T.; Wang, X.F.; Blake, D.R.; Gao, J.; Nie, W.; Gao, R.; Gao, X.M.; Xu, Z.; Ding, A.J.; et al. On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. Environ. Pollut. 2014, 195, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Xu, Z.; Yang, G.; Wang, B. Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in urban and suburban atmospheres of Beijing, China. Atmos. Chem. Phys. Discuss. 2011, 11, 8173–8206. [Google Scholar] [CrossRef]
- Wang, B.; Shao, M.; Roberts, J.M.; Yang, G.; Yang, F.; Hu, M.; Zeng, L.M.; Zhang, Y.H.; Zhang, J.B. Ground-based on-line measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in the Pearl River Delta, China. Int. J. Environ. Anal. Chem. 2010, 90, 548–559. [Google Scholar] [CrossRef]
- Xu, Z.; Xue, L.K.; Wang, T.; Xia, T.; Gao, Y.; Louie, P.K.K.; Luk, C.W.Y. Measurements of peroxyacetyle nitrate at a background site in the Pearl River Delta region: Production efficiency and regional transport. Aerosol Air Qual. Res. 2015, 15, 833–841. [Google Scholar] [CrossRef]
- Zhang, G.; Mu, Y.J.; Zhou, L.X.; Zhang, C.L.; Zhang, Y.Y.; Liu, J.F.; Fang, S.X.; Yao, B. Summertime distributions of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in Beijing: Understanding the sources and major sink of PAN. Atmos. Environ. 2015, 103, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Wang, X.M.; Gao, B.; Fu, X.X.; He, Q.F.; Zhao, X.Y.; Yu, J.Z.; Zheng, M. Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China. J. Geophys. Res. 2012, 117, D05313. [Google Scholar] [CrossRef]
- Hu, D.; Bian, Q.J.; Li, T.W.Y.; Lau, A.K.H.; Yu, J.Z. Contributions of isoprene, monoterpenes, β-caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006. J. Geophys. Res. 2008, 113, D22206. [Google Scholar] [CrossRef]
- Lai, S.C.; Zhao, Y.; Ding, A.J.; Zhang, Y.Y.; Song, T.L.; Zheng, J.Y.; Ho, K.F.; Lee, S.-C.; Zhong, L.J. Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China. Atmos. Res. 2016, 167, 208–215. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Su, H.; Zhong, L.J.; Cheng, Y.F.; Zeng, L.M.; Wang, X.S.; Xiang, Y.R.; Wang, J.L.; Gao, D.F.; Shao, M. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview. Atmos. Environ. 2008, 6157–6173. [Google Scholar] [CrossRef]
- Zhou, Y.; Yue, D.L.; Zhong, L.J.; Zeng, L.M. Properties of atmospheric PAN pollution in Heshan during summer time. Admin. Tech. Environ. Monitor. 2013, 4, 24–27. (In Chinese) [Google Scholar]
- Zhong, L.J.; Louie, P.K.K.; Zheng, J.Y.; Yuan, Z.B.; Yue, D.L.; Ho, J.W.K.; Lau, A.K.H. Science-policy interplay: Air quality management in the Pearl River Delta region and Hong Kong. Atmos. Environ. 2013, 76, 3–10. [Google Scholar] [CrossRef]
- Yuan, Z.B.; Zhong, L.J.; Lau, A.K.H.; Yu, J.Z.; Louie, P.K.K. Volatile organic compounds in the Pearl River Delta: Identification of source regions and recommendations for emission-oriented monitoring strategies. Atmos. Environ. 2013, 76, 162–172. [Google Scholar] [CrossRef]
- Guangdong Statistical Bureau (GSB), 2006–2016. Guangdong Statistical Yearbook, 2006–2016. Available online: http://www.gdstats./gov.cn (accessed on 13 August 2018).
- Guo, H.; Ling, Z.H.; Cheng, H.R.; Simpson, I.J.; Lyu, X.P.; Wang, X.M.; Shao, M.; Lu, H.X.; Ayoko, G.; Zhang, Y.L.; et al. Tropospheric volatile organic compounds in China. Sci. Total Environ. 2017, 574, 1021–1043. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.H.; Guo, H.; Chen, G.X.; Lam, S.H.M.; Fan, S.J. Formaldehyde and acetaldehyde at different elevations in mountainous areas in Hong Kong. Aerosol Air Qual. Res. 2016, 16, 1868–1878. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, T.; Xue, L.K.; Louie, P.K.K.; Luk, C.W.Y.; Gao, J.; Wang, S.L.; Chai, F.H.; Wang, W.X. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China. Atmos. Environ. 2013, 76, 221–226. [Google Scholar]
- Xu, Z.; Nie, W.; Nanjing University, Nanjing, China. Personal communication, 2018.
- Wang, J.L.; Wang, C.H.; Lai, S.H.; Chang, C.C.; Liu, Y.; Zhang, Y.H.; Liu, S.; Shao, M. Characterization of ozone precursors in the Pearl River Delta by time series observation of non-methane hydrocarbons. Atmos. Environ. 2008, 42, 6233–6246. [Google Scholar] [CrossRef]
- Lyu, X.P.; Liu, M.; Guo, H.; Ling, Z.H.; Wang, Y.; Louie, P.K.K.; Luk, C.W.Y. Spatiotemporal variation of ozone precursors and ozone formation in Hong Kong: Grid field measurement and modeling study. Sci. Total Environ. 2016, 569–570, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, M.E.; Saunders, S.M.; Wagner, V.; Pilling, M.J. Protocol for the development of the master chemical mechanism MCMv3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181–193. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the master chemical mechanism MVMv3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef]
- Ling, Z.H.; Zhao, J.; Fan, S.J.; Wang, X.M. Sources of formaldehyde and their contributions to photochemical O3 formation at an urban site in the Pearl River Delta, southern China. Chemosphere 2017, 168, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, D.; Fan, Q.; Wang, B.M.; Li, H.W.; Fan, S.J. Observational studies of the meteorological characteristics associated with poor air quality over the Pearl River Delta in China. Atmos. Chem. Phys. 2013, 13, 10755–10766. [Google Scholar] [CrossRef] [Green Version]
- Byun, D.W.; Ching, J.K.S. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; Environmental Protection Agency Office of Research & Development: Chicago, IL, USA, 1999. [Google Scholar]
- Byun, D.W.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. App. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- He, K. Multi-resolution Emission Inventory for China (MEIC): Model framework and 1990–2010 anthropogenic emissions. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 3–7 December 2012. [Google Scholar]
- Wang, N.; Lyu, X.P.; Deng, X.J.; Guo, H.; Deng, T.; Li, Y.; Yin, C.Q.; Wang, S.Q. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Sci. Total Environ. 2016, 573, 1554–1565. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Ling, Z.H.; Deng, X.J.; Deng, T.; Lyu, X.P.; Li, T.Y.; Gao, X.R.; Chen, X. Source contributions to PM2.5 under unfavorable weather conditions in Guangzhou City, China. Adv. Atmos. Sci. 2018, 35, 1145–1159. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Zhang, L.J.; Che, W.W.; Zheng, Z.Y.; Yin, S.S. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmos. Environ. 2009, 43, 5112–5122. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, H.R.; Ling, Z.H.; Louie, P.K.K.; Ayoko, G.A. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? J. Hazard. Mater. 2011, 188, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.H.; Guo, H.; Cheng, H.R.; Yu, Y.F. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environ. Pollut. 2011, 159, 2310–2319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Wang, X.M.; Barletta, B.; Simpson, I.J.; Blake, D.R.; Fu, X.X.; Zhang, Z.; He, Q.F.; Liu, T.Y.; Zhao, X.Y.; et al. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. J. Hazard. Mater. 2013, 250–251, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Brook, J.R.; Vet, R. A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys. 2003, 3, 2067–2082. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zhang, M.G.; Skorokhod, A.; Kou, X.X. Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ. Atmos. Environ. 2017, 166, 47–61. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Wang, X.M.; Chen, F.; Turnipseed, A.A.; Guenther, A.B.; Niyogi, D.; Charusombat, U.; Xia, B.C.; Munger, J.W.; Alapaty, K. Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. Atmos. Environ. 2011, 45, 2663–2674. [Google Scholar] [CrossRef] [Green Version]
- Turnipseed, A.A.; Huey, L.G.; Nemitz, E.; Stickel, R.; Higgs, J.; Tanner, D.J.; Slusher, D.L.; Sparks, J.; Flocke, F.; Guenther, A. Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOy at a coniferous forest. J. Geophys. Res. 2006, 111, D09304. [Google Scholar] [CrossRef]
- McFadyen, G.G.; Cape, J.N. Physical and chemical influences on PAN concentrations at a rural site. Atmos. Environ. 1999, 33, 2929–2940. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Kuster, W.C.; Goldan, P.D.; Li, X.H.; Lu, S.H.; de Gouw, J.A. Source identification of reactive hydrocarbons and oxygenated VOCs in the summertime in Beijing. Environ. Sci. Technol. 2009, 43, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Shao, M.; de Gouw, J.; Parrish, D.D.; Lu, S.H.; Wang, M.; Zeng, L.M.; Zhang, Q.; Song, Y.; Zhang, J.B. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J. Geophys. Res. 2012, 117, D24302. [Google Scholar] [CrossRef]
- Cheng, H.R.; Guo, H.; Wang, X.M.; Saunders, S.M.; Lam, S.H.M.; Jiang, F.; Wang, T.; Ding, A.; Lee, S.; Ho, K.F. On the relationship between ozone its precursors in the Pearl River Delta: Application of an observation-based model (OBM). Environ. Sci. Pollut. R. 2010, 17, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Nie, W.; Gao, J.; Xue, L.K.; Gao, X.M.; Wang, X.F.; Qiu, J.; Poon, C.N.; Meinardi, S.; Blake, D. Air quality during the 2008 Beijing Olympics: Secondary pollutants regional impact. Atmos. Chem. Phys. 2010, 10, 7603–7615. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Zhang, Y.H.; Zeng, L.M.; Tang, X.Y.; Zhang, J.; Zhong, L.J.; Wang, B.G. Groud-level ozone in the Pearl River Delta and the roles of VOCs and NOx in its production. J. Environ. Manag. 2009, 90, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.H.; Guo, H.; Lam, S.H.M.; Saunders, S.M.; Wang, T. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a master chemical mechanism–photochemical box model. J. Geophys. Res. 2014, 119, 10567–10582. [Google Scholar] [CrossRef]
WRF v3.7.1 | CMAQ v5.0.2 | ||
---|---|---|---|
Microphysics Scheme | Morrison (2 moments) | Generalized-Coordinate Driver Module | Yamartino |
Cumulus Scheme | Kain–Fristsch | Gas-Phase Chemistry Solver Module | cb05tucl_ae5 |
Longwave Radiation Scheme | RRTM | Aerosol Module | Aero5 |
Shortwave Radiation Scheme | Dudhia | Photolysis Calculation Module | Phot_inline |
Boundary Layer Scheme | ACM2 | Cloud Module | Acm_ae5_kmti |
Land Surface Scheme | Pleim–Xiu | Chemical Mechanism | cb05tucl |
Urban Surface Scheme | UCM |
Meteorological Variables (Unit) | Mean | |||||
---|---|---|---|---|---|---|
Obs. | Sim. | MB | NMB | RMSE | IOA * | |
Surface pressure (hPa) | 998.8 | 998.0 | −0.8 | 0.01 | 3.0 | 0.99 |
2 m air temperature (°C) | 29.1 | 28.5 | −0.6 | −0.01 | 1.2 | 0.82 |
2 m relative humidity (%) | 80.3 | 85.6 | 5.3 | 0.1 | 8.0 | 0.75 |
10 m wind speed (m/s) | 1.7 | 3.0 | 1.3 | 1.3 | 1.7 | 0.60 |
O3 (ppb) | 29.1 | 31.3 | −2.2 | 0.01 | 17.2 | 0.84 |
PAN (ppb) | 0.507 | 0.532 | 0.025 | 0.05 | 0.561 | 0.74 |
NOx (ppb) | 21.8 | 16.0 | −5.8 | −0.27 | 15.3 | 0.73 |
Species | Mixing Ratio | Species | Mixing Ratio |
---|---|---|---|
PAN | 0.31 ± 0.02 | cis-2-Butene | 109 ± 11 |
NOx | 12 ± 1 | Isoprene | 566 ± 68 |
NOy | 15 ± 1 | Toluene | 2335 ± 408 |
O3 | 21 ± 1 | m+p-Xylene | 566 ± 99 |
Propene | 1409 ± 96 | o-Xylene | 245 ± 38 |
trans-2-Butene | 113 ± 13 | Trimethylbenzenes | 264 ± 44 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Ling, Z.; Wang, Z.; Lu, X.; Fan, S.; He, Z.; Guo, H.; Wang, X.; Wang, N. PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region. Atmosphere 2018, 9, 372. https://doi.org/10.3390/atmos9100372
Yuan J, Ling Z, Wang Z, Lu X, Fan S, He Z, Guo H, Wang X, Wang N. PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region. Atmosphere. 2018; 9(10):372. https://doi.org/10.3390/atmos9100372
Chicago/Turabian StyleYuan, Jun, Zhenhao Ling, Zhe Wang, Xi Lu, Shaojia Fan, Zhuoran He, Hai Guo, Xuemei Wang, and Nan Wang. 2018. "PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region" Atmosphere 9, no. 10: 372. https://doi.org/10.3390/atmos9100372
APA StyleYuan, J., Ling, Z., Wang, Z., Lu, X., Fan, S., He, Z., Guo, H., Wang, X., & Wang, N. (2018). PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region. Atmosphere, 9(10), 372. https://doi.org/10.3390/atmos9100372