Local Convection and Turbulence in the Amazonia Using Large Eddy Simulation Model
Abstract
:1. Introduction
2. LES Model and Simulation Set-Up
2.1. Sites and Data Experiments
2.2. The Parallelized LES Model (PALM)
2.3. Domain Size Configuration
2.4. Initialization and Forcing of the Simulations
2.5. Budget Turbulent Kinect Energy (TKE) Analysis
3. Results and Discussion
3.1. Characteristics of Vertical Profiles and Surface Conditions
3.2. Sensible and Latent Heat Flux Time Evolution
3.3. TKE Budget
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andreae, M.O.; Acevedo, O.C.; Araújo, A.; Artaxo, P.; Barbosa, C.G.G.; Barbosa, H.M.J.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B.B.L.; et al. The Amazon Tall Tower Observatory (ATTO) in the remote Amazon Basin: Overview of first results from ecosystem ecology, meteorology, trace gas, and aerosol measurements. Atmos. Chem. Phys. Discuss. 2015, 15, 1599–11729. [Google Scholar] [CrossRef]
- Martin, S.T.; Artaxo, P.; Machado, L.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; Biscaro, T.; Brito, J.; Calheiros, A.; et al. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bull. Am. Meteorol. Soc. 2017, 98, 981–997. [Google Scholar] [CrossRef]
- Wendisch, M.; Pöschl, U.; Andreae, M.O.; Machado, L.A.; Albrecht, R.; Schlager, H.; Rosenfeld, D.; Martin, S.T.; Abdelmonem, A.; Afchine, A.; et al. The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Am. Meteorol. Soc. 2016, 97, 1885–1908. [Google Scholar] [CrossRef]
- Oliveira, R.; Maggioni, V.; Vila, D.; Porcacchia, L. Using Satellite Error Modeling to Improve GPM-Level 3 Rainfall Estimates over the Central Amazon Region. Remote Sens. 2018, 10, 336. [Google Scholar] [CrossRef]
- Wali, M.K.; Lal, R. Amazonian Deforestation and Climate; Gash, J.H.C., Nobre, C.A., Roberts, J.M., Victoria, R.L., Eds.; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Nobre, A.D.; Oyama, M.D.; Oliveira, G.S. The Future Climate of Amazonia. 2014. Available online: http://www.ccst.inpe.br/o-futuro-climatico-da-amazonia-relatorio-de-avaliacao-cientifica-antonio-donato-nobre/ (accessed on 16 September 2018). (In Portuguese).
- De Souza, E.B.; Carmo, A.M.C.; Moares, B.C.; Nacif, A.; da Silva Ferreira, D.B.; Rocha, E.J.P.; Souza, P.J.D.O.P. Seasonal Precipitation over the Brazilian Legal Amazon: Climate Current and Future Projections Using REGCM4 Model. Available online: https://revistas.ufpr.br/revistaabclima/article/view/43711/28725 (accessed on 16 September 2018). (In Portuguese).
- Werth, D.; Avissar, R. The local and global effects of Amazon deforestation. J. Geophys. Res.Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Tomasella, J.; Nobre, C.A. Climate change and water resources. Clim. Chang. 2017, 37, 7–23. [Google Scholar] [CrossRef]
- Salati, E.; Nobre, C.A. Possible climatic impacts of tropical deforestation. Clim. Chang. 1992, 19, 177–196. [Google Scholar] [CrossRef]
- Guimberteau, M.; Ciais, P.; Ducharne, A.; Boisier, J.P.; Dutra Aguiar, A.P.; Biemans, H.; De Deurwaerder, H.; Galbraith, D.; Kruijt, B.; Langerwisch, F.; et al. Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover change scenarios. Hydrol. Earth Syst. Sci. 2017, 21, 1455–1475. [Google Scholar] [CrossRef]
- Molion, L.C.B. Hydrology and water manegement in the humid tropics. In Amazonia Rainfall and Its Variability; Bonell, M., Hufschmidt, M.M., Gladwell, J.S., Eds.; Cambrigde University Press: Cambrigde, UK, 1993; pp. 99–111. [Google Scholar]
- Hastenrath, S. Annual cycle of upper air circulation and convective activity over the tropical Americas. J. Geophys. Res. 1997, 102, 4267–4274. [Google Scholar] [CrossRef] [Green Version]
- Horel, J.D.; Hahmann, A.N.; Geisler, J.E. An investigation of the annual cycle of convective activity over the tropical Americas. J. Clim. 1989, 2, 1388–1403. [Google Scholar] [CrossRef]
- Letzel, M.O.; Raasch, S. Large Eddy Simulation of Thermally Induced Oscillations in the Convective Boundary Layer. J. Atmos. Sci. 2003, 60, 2328–2341. [Google Scholar] [CrossRef]
- Patton, E.G.; Sullivan, P.P.; Moeng, C.H. The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci. 2005, 62, 2078–2097. [Google Scholar] [CrossRef]
- Huang, H.Y.; Margulis, S.A. On the impact of surface heterogeneity on a realistic convective boundary layer. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Maronga, B.; Raasch, S. Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Bound. Lay. Meteorol. 2013, 146, 17–44. [Google Scholar] [CrossRef]
- Kurowski, M.J.; Teixeira, J. A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer. J. Atmos. Sci. 2018, 75, 675–690. [Google Scholar] [CrossRef]
- Fisch, G.; Tota, J.; Machado, L.A.T.; Silva Dias, M.A.F.; da F. Lyra, R.F.; Nobre, C.A.; Dolman, A.J.; Gash, J.H.C. The convective boundary layer over pasture and forest in Amazonia. Theor. Appl. Climatol. 2004, 78, 47–59. [Google Scholar] [CrossRef]
- Raasch, S.; Schröter, M. PALM-A large-eddy simulation model performing on massively parallel computers. Meteorol. Z. 2001, 10, 363–372. [Google Scholar] [CrossRef]
- Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M. O.; Sühring, M.; Raasch, S. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev. 2015, 8, 2515–2551. [Google Scholar] [CrossRef]
- Kanda, M.; Inagaki, A.; Letzel, M.; Raasch, S.; Watanabe, T. LES study of the energy imbalance problem with eddy covariance fluxes. Bound. Lay. Meteorol. 2004, 110, 381–404. [Google Scholar] [CrossRef]
- Raasch, S.; Franke, T. Structure and formation of dust devil–like vortices in the atmospheric boundary layer: A high-resolution numerical study. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Beare, R.J.; Macvean, M.K.; Hostlag, A.A.M.; Cuxart, J.; Esau, I.; Golaz, J.-C.; Jimenez, M.A.; Khairoutdinov, M.; Kosovic, B.; Lewellen, D.; et al. An intercomparison of large-eddy simulations of the stable boundary layer. Bound. Lay. Meteorol. 2006, 118, 247–272. [Google Scholar] [CrossRef]
- Steinfeld, G.; Letzel, M.O.; Raasch, S.; Kanda, M.; Inagaki, A. Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study. Bound. Lay. Meteorol. 2007, 123, 78–98. [Google Scholar] [CrossRef]
- Letzel, M.O.; Krane, M.; Raasch, S. High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 2008, 42, 8770–8784. [Google Scholar] [CrossRef]
- Maronga, B.; Reuder, J. On the Formulation and Universality of Monin–Obukhov Similarity Functions for Mean Gradients and Standard Deviations in the Unstable Surface Layer: Results from Surface-Layer-Resolving Large-Eddy Simulations. J. Atmos. Sci. 2017, 74, 989–1010. [Google Scholar] [CrossRef]
- Riechelmann, T.; Noh, Y.; Raasch, S. A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys. 2012, 14. [Google Scholar] [CrossRef]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound. Lay. Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Moeng, C.-H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 1984, 41, 2052–2062. [Google Scholar] [CrossRef]
- Mason, P.J. Large-eddy simulation: A critical review of the technique. Q. J. R. Meteorol. Soc. 1994, 120, 1–26. [Google Scholar] [CrossRef]
- de Rivas, K.E. On the use of nonuniform grids in finite-difference equations. J. Comput. Phys. 1972, 10, 202–210. [Google Scholar] [CrossRef]
- Silva Dias, M.; Petersen, W.; Dias, P.S.; Cifelli, R.; Betts, A.; Longo, M.; Gomes, A.; Fisch, G.; Lima, M.; Antonio, M.; Albrecht, R. A case study of convective organization into precipitating lines in the southwest amazon during the WETAMC and TRMM-LBA. J Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Santos, R.D.; Fisch, G.; Dolman, A.J.; Waterloo, M. Modelagem da camada limite noturna (CLN) durante a época úmida na Amazônia, sob diferentes condições de desenvolvimento. Rev. Bras. Meteorol. 2007, 22, 387–407. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin, Germany, 1988. [Google Scholar]
Θ | q | w | TKE | u∗ | |||
---|---|---|---|---|---|---|---|
(Κ) | (g kg−1) | (cm s−1) | (K m s−1) | (kg kg−1 m s−1) | (m2 s−2) | (m s−1) | |
Bias | −0.15 | 0.22 | 0.02 | 1.11 × 10−7 | 1.87 × 10−13 | −2.33 | −0.01 |
RMSE | 5.17 × 10−4 | 0.52 | 0.05 | 1.52 × 10−6 | 2.6 × 10−12 | −2.35 | 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, T.; Fisch, G.; Raasch, S. Local Convection and Turbulence in the Amazonia Using Large Eddy Simulation Model. Atmosphere 2018, 9, 399. https://doi.org/10.3390/atmos9100399
Neves T, Fisch G, Raasch S. Local Convection and Turbulence in the Amazonia Using Large Eddy Simulation Model. Atmosphere. 2018; 9(10):399. https://doi.org/10.3390/atmos9100399
Chicago/Turabian StyleNeves, Theomar, Gilberto Fisch, and Siegfried Raasch. 2018. "Local Convection and Turbulence in the Amazonia Using Large Eddy Simulation Model" Atmosphere 9, no. 10: 399. https://doi.org/10.3390/atmos9100399
APA StyleNeves, T., Fisch, G., & Raasch, S. (2018). Local Convection and Turbulence in the Amazonia Using Large Eddy Simulation Model. Atmosphere, 9(10), 399. https://doi.org/10.3390/atmos9100399