Atmospheric Chemistry of 2-Methoxypropene and 2-Ethoxypropene: Kinetics and Mechanism Study of Reactions with Ozone
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Methods
2.2.1. Chamber Description
2.2.2. Kinetic Studies
Absolute Measurements
Relative Measurements
2.2.3. Product Study
3. Results and Discussion
3.1. Kinetic Studies
3.2. Product Study
4. Atmospheric Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, S.; Barnes, I.; Zhu, T.; Bejan, I.; Benter, T. Kinetic study of the gas-phase reactions of OH and NO3 radicals and O3 with selected vinyl ethers. J. Phys. Chem. A 2006, 110, 7386–7392. [Google Scholar] [CrossRef] [PubMed]
- Taccone, R.A.; Moreno, A.; Colmenar, I.; Salgado, S.; Martín, M.P.; Cabañas, B. Kinetic study of the OH, NO3 radicals and Cl atom initiated atmospheric photo-oxidation of iso-propenyl methyl ether. Atmos. Environ. 2016, 127, 80–89. [Google Scholar] [CrossRef]
- Peirone, S.A.; Aranguren Abrate, J.P.; Taccone, R.A.; Cometto, P.M.; Lane, S.I. Kinetic study of the OH-initiated photo-oxidation of four unsaturated (allyl and vinyl) ethers under simulated atmospheric conditions. Atmos. Environ. 2011, 45, 5325–5331. [Google Scholar] [CrossRef]
- Mellouki, A.; Wallington, T.J.; Chen, J. Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate. Chem. Rev. 2015, 115, 3984–4014. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Mellouki, A.; Le Bras, G.; Sidebottom, H. Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase. Chem. Rev. 2003, 103, 5077–5096. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Atmospheric Oxidation of Vinyl Ethers. Ph.D. Thesis, University of Wuppertal, North Rhine-Westphalia, Germany, April 2007. [Google Scholar]
- Cavalli, F. Atmospheric oxidation of selected alcohols and esters. Ph.D. Thesis, University of Wuppertal, North Rhine-Westphalia, Germany, December 2001. [Google Scholar]
- Aschmann, S.M.; Atkinson, R. Rate constants for the gas-phase reactions of selected dibasic esters with the OH radical. Int. J. Chem. Kin. 1998, 30, 471–474. [Google Scholar] [CrossRef]
- Aschmann, S.M.; Atkinson, R. Kinetics of the gas-phase reactions of the OH radical with selected glycol ethers, glycols, and alcohols. Int. J. Chem. Kin. 1998, 30, 533–540. [Google Scholar] [CrossRef]
- Atkinson, R. Product studies of gas-phase reactions of organic compounds. Pure Appl. Chem. 1998, 70, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R. Gas-phase degradation of organic compounds in the troposphere. Pure Appl. Chem. 1998, 70, 1327–1334. [Google Scholar] [CrossRef]
- Aschmann, S.M.; Atkinson, R. Atmospheric chemistry of 1-methyl-2-pyrrolidinone. Atmos. Environ. 1999, 33, 591–599. [Google Scholar] [CrossRef]
- Aschmann, S.M.; Atkinson, R. Products of the gas-phase reactions of the OH radical with n-butyl methyl ether and 2-isopropoxyethanol: Reactions of ROC(Ȯ)<radicals. Int. J. Chem. Kin. 1999, 31, 501–513. [Google Scholar]
- Aschmann, S.M.; Arey, J.; Atkinson, R. Atmospheric chemistry of selected hydroxy-carbonyls. J. Phys. Chem. 2000, 104, 3998–4003. [Google Scholar] [CrossRef]
- Lewis, A.C.; Carslaw, N.; Marriott, P.J.; Kinghorn, R.M.; Morrison, P.; Lee, A.L.; Bartle, K.D.; Pilling, M.J. A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature 2000, 405, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Agre, B.; Taber, A.; Beregovykh, V.; Klebanova, F.; Nekrasov, N.; Sobolev, O.; Kalechits, I. Kinetics of the catalytic synthesis of 2-methoxypropene. Pharm. Chem. J. 1983, 17, 221–225. [Google Scholar] [CrossRef]
- Thiault, G.; Thévenet, R.; Mellouki, A.; Le Bras, G. OH and O3-initiated oxidation of ethyl vinyl ether. Phys. Chem. Chem. Phys. 2002, 4, 613–619. [Google Scholar] [CrossRef]
- He, M.; Wang, H.; Sun, X.; Zhang, Q.; Wang, W. Theoretical study of OH-initiated atmospheric oxidation for propyl vinyl ether. J. Theor. Comput. Chem. 2009, 8, 261–277. [Google Scholar] [CrossRef]
- Wang, L.; Ge, M.; Wang, W. Kinetic study of the reactions of chlorine atoms with ethyl vinyl ether and propyl vinyl ether. Chem. Phys. Lett. 2009, 473, 30–33. [Google Scholar] [CrossRef]
- Perry, R.A.; Atkinson, R.; Pitts, J.N. Rate constants for the reaction of OH radicals with dimethyl ether and vinyl methyl ether over the temperature range 299–427 K. J. Chem. Phys. 1977, 67, 611–614. [Google Scholar] [CrossRef]
- Grosjean, E.; Grosjean, D. The gas phase reaction of unsaturated oxygenates with ozone: Carbonyl products and comparison with the alkene-ozone reaction. J. Atmos. Chem. 1997, 27, 271–289. [Google Scholar] [CrossRef]
- Grosjean, E.; Grosjean, D. Rate constants for the gas-phase reaction of ozone with unsaturated oxygenates. Int. J. Chem. Kinet. 1998, 30, 21–29. [Google Scholar] [CrossRef]
- Grosjean, E.; Grosjean, D. The reaction of unsaturated aliphatic oxygenates with ozone. J. Atmos. Chem. 1999, 32, 205–232. [Google Scholar] [CrossRef]
- Klotz, B.; Barnes, I.; Imamura, T. Product study of the gas-phase reactions of O3, OH and NO3 radicals with methyl vinyl ether. Phys. Chem. Chem. Phys. 2004, 6, 1725–1734. [Google Scholar] [CrossRef]
- Scarfogliero, M.; Picquet-Varrault, B.; Salce, J.; Durand-Jolibois, R.; Doussin, J.-F. Kinetic and mechanistic study of the gas-phase reactions of a series of vinyl ethers with the nitrate radical. J. Phys. Chem. A 2006, 110, 11074–11081. [Google Scholar] [CrossRef] [PubMed]
- Thiault, G.; Mellouki, A. Rate constants for the reaction of OH radicals with n-propyl, n-butyl, iso-butyl and tert-butyl vinyl ethers. Atmos. Environ. 2006, 40, 5566–5573. [Google Scholar] [CrossRef]
- Zhou, S.; Barnes, I.; Zhu, T.; Klotz, B.; Albu, M.; Bejan, I.; Benter, T. Product study of the OH, NO3, and O3 initiated atmospheric photooxidation of propyl vinyl ether. Environ. Sci. Technol. 2006, 40, 5415–5421. [Google Scholar] [CrossRef] [PubMed]
- Al Mulla, I.; Viera, L.; Morris, R.; Sidebottom, H.; Treacy, J.; Mellouki, A. Kinetics and mechanisms for the reactions of ozone with unsaturated oxygenated compounds. ChemPhysChem 2010, 11, 4069–4078. [Google Scholar] [CrossRef] [PubMed]
- Mellouki, A. Atmospheric Fate of Unsaturated Ethers. In Environmental Simulation Chambers: Application to Atmospheric Chemical Processes; Barnes, I., Rudzinski, K.J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2006; pp. 163–169. [Google Scholar]
- Al Mulla, I.A.S. Kinetic and mechanisms for the atmospheric degradation of unsaturated oxygen containing compounds. Ph.D. Thesis, National University of Ireland, Dublin, Ireland, April 2006. [Google Scholar]
- Zhou, S.; Barnes, I.; Zhu, T.; Benter, T. Kinetic study of gas-phase reactions of OH and NO3 radicals and O3 with iso-butyl and tert-butyl vinyl ethers. J. Phys. Chem. A 2012, 116, 8885–8892. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.; Carter, W.P.L. Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 1984, 84, 437–470. [Google Scholar] [CrossRef]
- Atkinson, R. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. J. Phys. Chem. Ref. Data 1997, 26, 215–290. [Google Scholar] [CrossRef]
- Johnson, D.; Marston, G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem. Soc. Rev. 2008, 37, 699–716. [Google Scholar] [CrossRef] [PubMed]
- Donahue, N.M.; Kroll, J.H.; Anderson, J.G.; Demerjian, K.L. Direct observation of OH production from the ozonolysis of olefins. Geophys. Res. Lett. 1998, 25, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.; Aschmann, S.M.; Arey, J.; Shorees, B. Formation of OH radicals in the gas phase reactions of O3 with a series of terpenes. J. Geophys. Res.: Atmos. 1992, 97, 6065–6073. [Google Scholar] [CrossRef]
- Grosjean, D.; Grosjean, E.; Williams, E.L. Rate constants for the gas-phase reactions of ozone with unsaturated alcohols, esters, and carbonyls. Int. J. Chem. Kinet. 1993, 25, 783–794. [Google Scholar] [CrossRef]
- Paulson, S.E.; Orlando, J.J. The reactions of ozone with alkenes: An important source of HOx in the boundary layer. Geophys. Res. Lett. 1996, 23, 3727–3730. [Google Scholar] [CrossRef]
- Paulson, S.E.; Chung, M.; Sen, A.D.; Orzechowska, G. Measurement of OH radical formation from the reaction of ozone with several biogenic alkenes. J. Geophys. Res.: Atmos. 1998, 103, 25533–25539. [Google Scholar] [CrossRef]
- Zogka, A.G.; Mellouki, A.; Romanias, M.N.; Bedjanian, Y.; Idir, M.; Grosselin, B.; Daele, V. Atmospheric Chemistry of 1-Methoxy 2-Propyl Acetate: UV Absorption Cross Sections, Rate Coefficients, and Products of Its Reactions with OH Radicals and CI Atoms. J. Phys. Chem. A 2016, 120, 9049–9062. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, L.; Wang, W.; Ge, M. Gas-phase reaction of two unsaturated ketones with atomic Cl and O3: Kinetics and products. Phys. Chem. Chem. Phys. 2015, 17, 12000–12012. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ren, Y.; Cazaunau, M.; Daële, V.; Hu, Y.; Chen, J.; Mellouki, A. Rate coefficients for the reaction of ozone with 2- and 3-carene. Chem. Phys. Lett. 2015, 621, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Xu, Y.; Jia, L. Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295–351 K. Int. J. Chem. Kinet. 2011, 43, 238–246. [Google Scholar] [CrossRef]
- Wegener, R.; Brauers, T.; Koppmann, R.; Bares, S.R.; Rohrer, F.; Tillmann, R.; Wahner, A.; Hansel, A.; Wisthaler, A. Simulation chamber investigation of the reactions of ozone with short-chained alkenes. J. Geophys. Res.: Atmos. 2007, 112, D13301. [Google Scholar] [CrossRef]
- Avzianova, E.V.; Ariya, P.A. Temperature-dependent kinetic study for ozonolysis of selected tropospheric alkenes. Int. J. Chem. Kinet. 2002, 34, 678–684. [Google Scholar] [CrossRef]
- Mason, S.A.; Arey, J.; Atkinson, R. Rate constants for the gas-phase reactions of NO3 radicals and O3 with C6-C14 1-alkenes and 2-methyl-1-alkenes at 296 ± 2 K. J. Phys. Chem. A 2009, 113, 5649–5656. [Google Scholar] [CrossRef] [PubMed]
- Duncianu, M.; Olariu, R.I.; Riffault, V.; Visez, N.; Tomas, A.; Coddeville, P. Development of a new flow reactor for kinetic studies. Application to the ozonolysis of a series of alkenes. J. Phys. Chem. A 2012, 116, 6169–6179. [Google Scholar] [CrossRef] [PubMed]
- Leather, K.E.; Mcgillen, M.R.; Percival, C.J. Temperature-dependent ozonolysis kinetics of selected alkenes in the gas phase: An experimental and structure-activity relationship (SAR) study. Phys. Chem. Chem. Phys. 2010, 12, 2935–2943. [Google Scholar] [CrossRef] [PubMed]
- Neeb, P.; Moortgat, G.K. Formation of OH Radicals in the Gas-Phase Reaction of Propene, Isobutene, and Isoprene with O3: Yields and Mechanistic Implications. J. Phys. Chem. A 1999, 103, 9003–9012. [Google Scholar] [CrossRef]
- Grosjean, D.; Grosjean, E. Rate constants for the gas-phase reaction of ozone with 1,1-disubstituted alkenes. Int. J. Chem. Kinet. 1996, 28, 911–918. [Google Scholar] [CrossRef]
- Pfrang, C.; King, M.D.; Braeckevelt, M.; Canosa-Mas, C.E.; Wayne, R.P. Gas-phase rate coefficients for reactions of NO3, OH, O3 and O(3P) with unsaturated alcohols and ethers: Correlations and structure–activity relations (SARs). Atmos. Environ. 2008, 42, 3018–3034. [Google Scholar] [CrossRef]
- Gai, Y.; Ge, M.; Wang, W. Kinetics of the gas-phase reactions of some unsaturated alcohols with Cl atoms and O3. Atmos. Environ. 2011, 45, 53–59. [Google Scholar] [CrossRef]
- Gibilisco, R.G.; Blanco, M.B.; Bejan, I.; Barnes, I.; Wiesen, P.; Teruel, M.A. Atmospheric sink of (E)-3-hexen-1-ol, (Z)-3-hepten-1-ol, and (Z)-3-octen-1-ol: Rate coefficients and mechanisms of the OH-radical initiated degradation. Environ. Sci. Technol. 2015, 49, 7717–7725. [Google Scholar] [CrossRef] [PubMed]
- Nakanaga, T.; Kondo, S.; Saëki, S. Infrared band intensities of formaldehyde and formaldehyde-d2. J. Chem. Phys. 1982, 76, 3860–3865. [Google Scholar] [CrossRef]
- Wohar, M.M.; Jagodzinski, P.W. Infrared spectra of H2CO, H213CO, D2CO, and D213CO and anomalous values in vibrational force fields. J. Mol. Spectrosc. 1991, 148, 13–19. [Google Scholar] [CrossRef]
- Lv, C.; Du, L.; Tang, S.; Tsona, N.T.; Liu, S.; Zhao, H.; Wang, W. Matrix isolation study of the early intermediates in the ozonolysis of selected vinyl ethers. RSC Adv. 2017, 7, 19162–19168. [Google Scholar] [CrossRef] [Green Version]
- Colmenar, I.; Martín, P.; Cabañas, B.; Salgado, S.; Tapia, A.; Martínez, E. Reaction products and mechanisms for the reaction of n-butyl vinyl ether with the oxidants OH and Cl: Atmospheric implications. Atmos. Environ. 2015, 122, 282–290. [Google Scholar] [CrossRef]
- Biermann, H.W.; Mac Leod, H.; Atkinson, R.; Winer, A.M.; Pitts, J.N. Kinetics of the gas-phase reactions of the hydroxyl radical with naphthalene, phenanthrene, and anthracene. Environ. Sci. Technol. 1985, 19, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 1986, 86, 69–201. [Google Scholar] [CrossRef]
- Atkinson, R. Estimations of OH radical rate constants from H-atom abstraction from CH and OH bonds over the temperature range 250–1000 K. Int. J. Chem. Kinet. 1986, 18, 555–568. [Google Scholar] [CrossRef]
- Atkinson, R. A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinet. 1987, 19, 799–828. [Google Scholar] [CrossRef]
- Atkinson, R. Kinetics of the gas-phase reactions of a series of organosilicon compounds with hydroxyl and nitrate (NO3) radicals and ozone at 297 ± 2 K. Environ. Sci. Technol. 1991, 25, 863–866. [Google Scholar] [CrossRef]
- Kwok, E.S.; Atkinson, R. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update. Atmos. Environ. 1995, 29, 1685–1695. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
Vinyl Ether | Reference | kS/kR | kS (cm3 molecule−1 s−1) |
---|---|---|---|
2-MPE | cyclohexene | 0.16 ± 0.002 | 1.18 ± 0.16 × 10−17 |
2-EPE | 0.24 ± 0.003 | 1.78 ± 0.24 × 10−17 |
Compound | kO3 × 1016 | Reference/Technique | Author |
---|---|---|---|
CH3CH2OCH=CH2 Ethyl vinyl ether | 1.54 ± 0.30 | Pseudo-first-order kinetics a/UV b | Grosjean and Grosjean [23] |
2.0 ± 0.2 | Concentration fit/FTIR c | Thiault et al. [18] | |
1.50 ± 0.17 | Relative/RR d | Al Mulla et al. [29] | |
1.43 ± 0.08 | Absolute/CL e | Al Mulla et al. [29] | |
2.0 ± 0.2 | Concentration fit | Mellouki et al. [30] | |
2.06 ± 0.42 | Relative/FTIR c | Zhou et al. [1] | |
1.3 | Relative and absolute/CL e | Al Mulla et al. [31] | |
CH3(CH2)2OCH=CH2 n-Propyl vinyl ether | 2.34 ± 0.48 | Relative/FTIR c | Zhou et al. [1] |
2.40 ± 0.40 | Concentration fit | Mellouki et al. [30] | |
2.4 | Relative and absolute/CL e | Al Mulla et al. [31] | |
CH3(CH2)3OCH=CH2 n-Butyl vinyl ether | 2.9 ± 0.2 | Concentration fit | Mellouki et al. [30] |
2.3 | Relative and absolute/CL e | Al Mulla et al. [31] | |
2.59 ± 0.52 | Relative/FTIR c | Zhou et al. [1] | |
CH3CH(CH3)CH2OCH=CH2 i-Butyl vinyl ether | 2.3 | Relative and absolute/CL e | Al Mulla et al. [31] |
2.86 ± 0.62 | Relative/FTIR c | Zhou et al. [32] | |
3.1 ± 0.2 | Concentration fit | Mellouki et al. [30] | |
CH3C(CH3)2OCH=CH2 t-Butyl vinyl ether | 2.4 | Relative and absolute/CL e | Al Mulla et al. [31] |
5.30 ± 1.07 | Relative/FTIR c | Zhou et al. [32] | |
5.0 ± 0.5 | Concentration fit | Mellouki et al. [30] | |
CH3OC(CH3)=CH2 2-Methoxypropene | 0.11 ± 0.01 | Pseudo-first-order kinetics/UV b | This work |
0.11 ± 0.01 | Relative/GC-FID f | This work | |
CH3CH2OC(CH3)=CH2 2-Ethoxyproene | 0.19 ± 0.02 | Pseudo-first-order kinetics/UV b | This work |
0.18 ± 0.02 | Relative/GC-FID f | This work | |
CH3CH2CH=CH2 But-1-ene | 0.09 | Absolute/UV b | Shi et al. [44] |
0.09 ± 0.01 | Absolute/UV b | Wegener et al. [45] | |
CH3(CH2)2CH=CH2 Pent-1-ene | 0.10 | Relative/GC-FID f | Avzianova et al. [46] |
0.10 ± 0.01 | Pseudo-first-order kinetics/UV b | Grosjean and Grosjean [23] | |
CH3(CH2)3CH=CH2 Hex-1-ene | 0.09 ± 0.01 | Relative/GC-FID f | Mason et al. [47] |
0.10 ± 0.02 | Relative/GC-FID f | Avzianova et al. [46] | |
(CH3)2CHCH2CH=CH2 4-Methylpent-1-ene | 0.08 | Pseudo-first-order kinetics/UV b | Duncianu et al. [48] |
0.08 | Pseudo-first-order kinetics/UV b | Leather et al. [49] | |
(CH3)3CCH=CH2 3,3-Dimethylbut-1-ene | 0.04 ± 0.01 | Pseudo-first-order kinetics/UV b | Leather et al. [49] |
C(CH3)2=CH2 2-Methylpropene | 0.11 ± 0.01 | Absolute/UV b | Shi et al. [44] |
0.11 ± 0.01 | Absolute/UV b | Wegener et al. [45] | |
0.05 | Relative/GC-FID f | Avzianova et al. [46] | |
0.12 ± 0.01 | Concentration fit/FTIR c | Neeb et al. [50] | |
CH3CH2C(CH3)=CH2 2-Methylbutene | 0.13 | Absolute/UV b | Shi et al. [44] |
0.14 | Relative/GC-FID f | Avzianova et al. [46] | |
CH3CH2CH2C(CH3)=CH2 2-Methylpentene | 0.13 ± 0.01 | Relative/GC-FID f | Mason et al. [47] |
0.13 ± 0.02 | Absolute/UV b | Grosjean and Grosjean [51] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, C.; Du, L.; Tsona, N.T.; Jiang, X.; Wang, W. Atmospheric Chemistry of 2-Methoxypropene and 2-Ethoxypropene: Kinetics and Mechanism Study of Reactions with Ozone. Atmosphere 2018, 9, 401. https://doi.org/10.3390/atmos9100401
Lv C, Du L, Tsona NT, Jiang X, Wang W. Atmospheric Chemistry of 2-Methoxypropene and 2-Ethoxypropene: Kinetics and Mechanism Study of Reactions with Ozone. Atmosphere. 2018; 9(10):401. https://doi.org/10.3390/atmos9100401
Chicago/Turabian StyleLv, Chen, Lin Du, Narcisse T. Tsona, Xiaotong Jiang, and Wenxing Wang. 2018. "Atmospheric Chemistry of 2-Methoxypropene and 2-Ethoxypropene: Kinetics and Mechanism Study of Reactions with Ozone" Atmosphere 9, no. 10: 401. https://doi.org/10.3390/atmos9100401
APA StyleLv, C., Du, L., Tsona, N. T., Jiang, X., & Wang, W. (2018). Atmospheric Chemistry of 2-Methoxypropene and 2-Ethoxypropene: Kinetics and Mechanism Study of Reactions with Ozone. Atmosphere, 9(10), 401. https://doi.org/10.3390/atmos9100401