Impact of Snow Darkening by Deposition of Light-Absorbing Aerosols on Snow Cover in the Himalayas–Tibetan Plateau and Influence on the Asian Summer Monsoon: A Possible Mechanism for the Blanford Hypothesis
Abstract
:1. Introduction
2. Model and Methodology
3. Results
3.1. Monsoon–Snow–Aerosol Climatology
3.2. SDE-Induced Forcing and Feedback
3.3. Changes in Mean Monsoon Climate
3.4. A Possible Mechanism for the Blanford Hypothesis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blanford, H.F. On the connexion of Hamalaya snowfall with dry winds and seasons of drought in India. Proc. R. Soc. Lond. 1884, 37, 3–22. [Google Scholar] [CrossRef]
- Hahn, D.G.; Shukla, J. An Apparent Relationship between Eurasian Snow Cover and Indian Monsoon Rainfall. J. Atmos. Sci. 1976, 33, 2461–2462. [Google Scholar] [CrossRef] [Green Version]
- Dey, B.; Kumar, O.S.B. An Apparent Relationship between Eurasian Spring Snow Cover and the Advance Period of the Indian Summer Monsoon. J. Appl. Meteorol. 1982, 21, 1929–1932. [Google Scholar] [CrossRef] [Green Version]
- Dickson, R.R. Eurasian Snow Cover versus Indian Monsoon Rainfall—An Extension of the Hahn-Shukla Results. J. Clim. Appl. Meteorol. 1984, 23, 171–173. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.P.; Dümenil, L.; Schlese, U.; Roeckner, E.; Latif, M. The Effect of Eurasian Snow Cover on Regional and Global Climate Variations. J. Atmos. Sci. 1989, 46, 661–686. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, B.; Yang, S. Relationships between regional Indian summer monsoon rainfall and Eurasian snow cover. Adv. Atmos. Sci. 1995, 12, 143–150. [Google Scholar] [CrossRef]
- Vernekar, A.D.; Zhou, J.; Shukla, J. The Effect of Eurasian Snow Cover on the Indian Monsoon. J. Clim. 1995, 8, 248–266. [Google Scholar] [CrossRef] [Green Version]
- Sankar-Rao, M.; Lau, K.-M.; Yang, S. On the Relationship between Eurasian Snow Cover and the Asian Summer Monsoon. Int. J. Climatol. 1996, 16, 605–616. [Google Scholar] [CrossRef]
- Dong, B.; Valdes, P.J. Modelling the Asian summer monsoon rainfall and Eurasian winter/spring snow mass. Q. J. R. Meteorol. Soc. 1998, 124, 2567–2596. [Google Scholar] [CrossRef]
- Bamzai, A.S.; Shukla, J. Relation between Eurasian Snow Cover, Snow Depth, and the Indian Summer Monsoon: An Observational Study. J. Clim. 1999, 12, 3117–3132. [Google Scholar] [CrossRef]
- Lau, K.M.; Li, M.T. The Monsoon of East Asia and its Global Associations—A Survey. Bull. Am. Meteorol. Soc. 1984, 65, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Xu, L. Linkage between Eurasian winter snow cover and regional Chinese summer rainfall. Int. J. Climatol. 1994, 14, 739–750. [Google Scholar] [CrossRef]
- Douville, H.; Royer, J.F. Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Météo-France GCM. Clim. Dyn. 1996, 12, 449–466. [Google Scholar] [CrossRef]
- Yang, S. ENSO–snow–monsoon associations and seasonal–interannual predictions. Int. J. Climatol. 1996, 16, 125–134. [Google Scholar] [CrossRef]
- Ferranti, L.; Molteni, F. Ensemble simulations of Eurasian snow-depth anomalies and their influence on the summer Asian monsoon. Q. J. R. Meteorol. Soc. 1999, 125, 2597–2610. [Google Scholar] [CrossRef]
- Liu, X.; Yanai, M. Influence of Eurasian spring snow cover on Asian summer rainfall. Int. J. Climatol. 2002, 22, 1075–1089. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, T.; Wang, B. Decadal Change of the Spring Snow Depth over the Tibetan Plateau: The Associated Circulation and Influence on the East Asian Summer Monsoon. J. Clim. 2004, 17, 2780–2793. [Google Scholar] [CrossRef]
- Robock, A.; Mu, M.; Vinnikov, K.; Robinson, D. Land surface conditions over Eurasia and Indian summer monsoon rainfall. J. Geophys. Res. 2003, 108, 4131. [Google Scholar] [CrossRef]
- Wu, B.; Yang, K.; Zhang, R. Eurasian snow cover variability and its association with summer rainfall in China. Adv. Atmos. Sci. 2009, 26, 31–44. [Google Scholar] [CrossRef]
- Kumar, K.K.; Balaji Rajagopalan, B.; Cane, M.A. On the weakening relationship between the Indian monsoon and ENSO. Science 1999, 284, 2156–2159. [Google Scholar] [CrossRef] [PubMed]
- Kripalani, R.; Kulkarni, A.; Sabade, S. Western Himalayan snow cover and Indian monsoon rainfall: A re-examination with INSAT and NCEP/NCAR data. Theor. Appl. Climatol. 2003, 74, 1–18. [Google Scholar] [CrossRef]
- Corti, S.; Molteni, F.; Branković, Č. Predictability of snow-depth anomalies over Eurasia and associated circulation patterns. Q. J. R. Meteorol. Soc. 2000, 126, 241–262. [Google Scholar] [CrossRef]
- Wu, R.; Kirtman, B.P. Observed Relationship of Spring and Summer East Asian Rainfall with Winter and Spring Eurasian Snow. J. Clim. 2007, 20, 1285–1304. [Google Scholar] [CrossRef]
- Fasullo, J. A Stratified Diagnosis of the Indian Monsoon—Eurasian Snow Cover Relationship. J. Clim. 2004, 17, 1110–1122. [Google Scholar] [CrossRef]
- Turner, A.G.; Slingo, J.M. Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM. Clim. Dyn. 2011, 36, 1717–1735. [Google Scholar] [CrossRef]
- Wang, B.; Bao, Q.; Hoskins, B.; Wu, G.; Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 2008, 35, L14702. [Google Scholar] [CrossRef]
- Babu, S.S.; Satheesh, S.K.; Moorthy, K.K. Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys. Res. Lett. 2002, 29, 1880. [Google Scholar] [CrossRef]
- Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kiehl, J.T.; Washington, W.M.; Fu, Q.; Sikka, D.R.; Wild, M. Atmospheric brown clouds: Impacts on South Asian Climate and hydrological cycle. Proc. Natl. Acad. Sci. 2005, 102, 5326–5333. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.E.; Ramanathan, V. Weakening of North Indian SST Gradients and the Monsoon Rainfall in India and the Sahel. J. Clim. 2006, 19, 2036–2045. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, M.K.; Kim, K.M. Aerosol induced anomalies in the Asian summer monsoon: The role of the Tibetan Plateau. Clim. Dyn. 2006, 26, 855–864. [Google Scholar] [CrossRef]
- Lau, K.; Ramanathan, V.; Wu, G.; Li, Z.; Tsay, S.C.; Hsu, C.; Sikka, R.; Holben, B.; Lu, D.; Tartari, G.; et al. The Joint Aerosol–Monsoon Experiment: A New Challenge for Monsoon Climate Research. Bull. Am. Meteorol. Soc. 2008, 89, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.M.; Kim, M.K.; Kim, K.M.; Lee, W.S. Enhanced surface warming and accelerated snowmelt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett. 2010, 5, 025204. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.M. Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall. Asian Pac. J. Atmos. Sci. 2017, 53, 181–194. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.M.; Leung, L.R. Changing circulation structure and rainfall characteristics of the Asian monsoon: Greenhouse warming vs. aerosols. Geosci. Lett. 2017, 4, 28. [Google Scholar] [CrossRef]
- Randles, C.A.; Ramaswamy, V. Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption. J. Geophys. Res. 2008, 113, D21203. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, K.M.; Tsay, S.C.; Kafatos, M. Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys. Res. Lett. 2009, 36, L07704. [Google Scholar] [CrossRef]
- Wang, C.; Kim, D.; Ekman, A.M.L.; Barth, M.C.; Rasch, P.J. Impact of anthropogenic aerosols on Indian summer monsoon. Geophys. Res. Lett. 2009, 36, L21704. [Google Scholar] [CrossRef]
- Bollasina, M.; Ming, Y.; Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian Monsoon. Science 2011, 334, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, D.; Rasch, P.J.; Wang, H.; Yoon, J.-H. Climate response of the South Asian monsoon system to anthropogenic aerosols. J. Geophys. Res. 2012, 117, D13209. [Google Scholar] [CrossRef]
- Lau, W.K.M. The Aerosol-Monsoon Climate System of Asia: A New Paradigm. J. Meteorol. Res. 2016, 30, 1–11. [Google Scholar] [CrossRef]
- Li, Z.; Lau, W.K.M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; et al. Aerosol and Monsoon Climate Interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, K.M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 2006, 33, L21810. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.M. Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys. Res. Lett. 2010, 37, L16705. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Collins, W.D. Effects of Black Carbon Aerosols on the Indian Monsoon. J. Clim. 2008, 21, 2869–2882. [Google Scholar] [CrossRef] [Green Version]
- D’Errico, M.; Cagnazzo, C.; Gogli, P.G.; Lau, W.K.M.; Hardenberg, J.; Fierli, F.; Cherchi, A. Indian monsoon and the elevated heat pump mechanism in a coupled aerosol-climate model. J. Geophys. Res. 2015, 120, 8712–8723. [Google Scholar] [CrossRef]
- Kim, M.K.; Lau, W.K.M.; Kim, K.-M.; Sang, J.; Kim, Y.-H.; Lee, W.-S. Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols. Clim. Dyn. 2016, 46, 2657–2671. [Google Scholar] [CrossRef]
- Hazra, A.; Goswami, B.N.; Chen, J.-P. Role of interactions between aerosol radiative effect, dynamics, and cloud microphysics on transitions of monsoon intraseasonal oscillations. J. Atmos. Sci. 2013, 70, 2073–2087. [Google Scholar] [CrossRef]
- Vinoj, V.; Rasch, P.J.; Wang, H.; Yoon, J.; Ma, P.; Landu, K. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat. Geosci. 2014, 7, 308–313. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.M.; Shi, J.J.; Matsui, T.; Chin, M.; Tan, Q.; Peters-Lidard, C.; Tao, W.K. Impacts of aerosol–monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills. Clim. Dym. 2016, 49, 1945–1960. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.M. Impacts of aerosols on climate and weather in the Hindu-Kush Himalayas-Gangetic region. Clim. Sci. 2018. [Google Scholar] [CrossRef]
- Flanner, M.G.; Zender, C.S.; Randerson, J.T.; Rasch, P.J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 2017, 112, D11202. [Google Scholar] [CrossRef]
- Flanner, M.G.; Zender, C.S.; Hess, P.G.; Mahowald, N.M.; Painter, T.H.; Ramanathan, V.; Rasch, P.J. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 2009, 9, 2481–2497. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-S.; Bhawar, R.L.; Kim, M.K.; Sang, J. Study of aerosol effect on accelerating snowmelt over the Tibetan Plateau during boreal spring. Atmos. Environ. 2013, 113–122. [Google Scholar] [CrossRef]
- Qian, Y.; Flanner, M.G.; Leung, L.R.; Wang, W. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys. 2011, 11, 1929–1948. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Yasunari, T.J.; Doherty, S.J.; Flanner, M.G.; Lau, W.K.M.; Ming, J.; Wang, H.; Wang, M.; Warren, S.G.; Zhang, R. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological impact. Adv. Atmos. Sci. 2015, 32, 64–91. [Google Scholar] [CrossRef]
- Yasunari, T.J.; Koster, R.D.; Lau, W.K.M.; Kim, K.-M. Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system. J. Geophys. Res. Atmos. 2015, 120, 5485–5503. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.M.; Sang, J.; Kim, M.K.; Kim, K.M.; Koster, R.D.; Yasunari, T.J. Impact of snow-darkening effects by light absorbing aerosols on hydro-climate of Eurasia, during boreal summer. J. Geophys. Res. 2018, 123. [Google Scholar] [CrossRef]
- Xu, B.; Cao, J.; Hansen, J.; Yao, T.; Joswia, D.R.; Wang, N.; Wu, G.; Wang, M.; Zhao, H.; Yang, W.; et al. Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. USA 2009, 106, 22114–22118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopacz, M.; Mauzerall, D.L.; Wang, J.; Leibensperger, E.M.; Henze, D.K.; Singh, K. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmos. Chem. Phys. 2011, 11, 2837–2852. [Google Scholar] [CrossRef] [Green Version]
- Rienecker, M.M.; Suarez, M.J.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H.-C.; Gu, W.; Sienkiewicz, M.; Koster, R.D.; Gelaro, R.; et al. The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1 and 5.1.0, and 5.2.0; NASA Tech. Rep. Series on Global Modeling and Data Assimilation; NASA/TM-2008-104606; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2008; Volume 27, p. 92.
- Ducharne, A.; Koster, R.D.; Suarez, M.J.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J. Geophys. Res. 2000, 105, 823–824. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J.; Ducharne, A.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res. 2000, 105, 24809–24822. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, M. The development and validation of a simple snow model for the GISS GCM. J. Clim. 1994, 7, 1842–1855. [Google Scholar] [CrossRef]
- Yasunari, T.J.; Tan, Q.; Lau, K.M.; Bonasoni, P.; Marinoni, A.; Laj, P.; Menegoz, M.; Takemura, T.; Chin, M. Estimated range of black carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods. Atmos. Environ. 2013, 78, 259–267. [Google Scholar] [CrossRef]
- Yasunari, T.J.; Lau, K.M.; Mahanama, S.P.P.; Colarco, P.R.; da Silva, A.M.; Aoki, T.; Aoki, K.; Murao, N.; Yamagata, S.; Kodama, Y. The GOddard SnoW impurity module (GOSWIM) for the NASA GEOS-5 earth system model: Preliminary comparisons with observations in Sapporo, Japan. SOLA 2014, 10, 50–56. [Google Scholar] [CrossRef]
- Chin, M.; Rood, R.B.; Lin, S.-J.; Müller, J.-F.; Thompson, A.M. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res. 2000, 105, 24671. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef] [Green Version]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef] [Green Version]
- Colarco, P.; da Silva, A.; Chin, M.; Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. Atmos. 2010, 115, D14207. [Google Scholar] [CrossRef]
- Randles, C.A.; Colarco, P.R.; da Silva, A. Direct and semi-direct aerosol effects in the NASA GEOS-5 AGCM: Aerosol-climate interactions due to prognostic versus prescribed aerosols. J. Geophys. Res. Atmos. 2013, 118, 149–169. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Kim, K.M.; Hsu, N.C.; Holben, B.N. Possible influences of air pollution, dust and sandstorms on the Indian monsoon. WMO Bull. 2009, 58, 22–30. [Google Scholar]
- Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P.R.; Diehl, T.L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; et al. A multi-model evaluation of aerosols over South Asia: Common problems and possible causes. Atmos. Chem. Phys. 2015, 15, 5903–5928. [Google Scholar] [CrossRef]
- Yanai, M.; Li, C.; Song, Z. Seasonal Heating of the Tibetan Plateau and Its Effects on the Evolution of the Asian Summer Monsoon. J. Meteorol. Soc. Jpn. Ser. II 1992, 70, 319–351. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, Y.; Wang, T.; Wan, R.; Liu, X.; Li, W.; Wang, Z.; Zhang, Q.; Duan, A.; Liang, X. The Influence of Mechanical and Thermal Forcing by the Tibetan Plateau on Asian Climate. J. Hydrometeorol. 2007, 8, 770–789. [Google Scholar] [CrossRef]
- Krishnamurti, T.N. Summer Monsoon Experiment—A Review. Mon. Weather Rev. 1985, 113, 1590–1626. [Google Scholar] [CrossRef] [Green Version]
- Webster, P.J.; Yang, S. Monsoon and Enso: Selectively Interactive Systems. Q. J. R. Meteorol. Soc. 1992, 118, 877–926. [Google Scholar] [CrossRef]
- Webster, P.J.; Magana, V.O.; Palmer, T.N.; Shukla, J.; Tomas, R.A.; Yanai, M.; Yasunari, T. Monsoons: Processes, predictability and the prospects for prediction. J. Geophys. Res. Oceans 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Wang, B. The Asian Monsoon; Springer: Heidelberg, Germany, 2006; p. 787. ISBN 978-3-540-40610-5. [Google Scholar]
- Leary, C.A.; Houze, R.A. Melting and Evaporation of Hydrometeors in Precipitation from the Anvil Clouds of Deep Tropical Convection. J. Atmos. Sci. 1979, 36, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Sud, Y.C.; Walker, G.K. A Rain Evaporation and Downdraft Parameterization to Complement a Cumulus Updraft Scheme and Its Evaluation Using GATE Data. Mon. Weather Rev. 1993, 121, 3019–3039. [Google Scholar] [CrossRef] [Green Version]
- Bacmeister, J.T.; Suarez, M.J.; Robertson, F.R. Rain Re-evaporation, Boundary Layer–Convection Interactions, and Pacific Rainfall Patterns in an AGCM. J. Atmos. Sci. 2006, 63, 3383–3403. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, K.M.; Yang, S. Dynamical and Boundary Forcing Characteristics of Regional Components of the Asian Summer Monsoon. J. Clim. 2000, 13, 2461–2482. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Sampe, T.; Xie, S. Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet. J. Clim. 2010, 23, 113–134. [Google Scholar] [CrossRef]
- Zhou, T.-J.; Yu, R.-C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. 2005, 110, D08104. [Google Scholar] [CrossRef]
- Li, C.F.; Yanai, M. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J. Clim. 1996, 9, 358–375. [Google Scholar] [CrossRef]
- Xavier, P.K.; Marzin, C.; Goswami, B.N. An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. Q. J. R. Meteorol. Soc. 2007, 133, 749–764. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Cheng, Y.; Li, Z. Origin, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL): Roles of monsoon dynamics. Sci. Rep. 2018, 8, 3960. [Google Scholar] [CrossRef] [PubMed]
- Roesch, A. Evaluation of surface albedo and snow cover in AR4 coupled climate models. J. Geophys. Res. 2006, 111, D15111. [Google Scholar] [CrossRef]
- Levy, R.C.; Leptoukh, G.G.; Kahn, R.; Zubko, V.; Gopalan, A.; Remer, L.A. A Critical Look at Deriving Monthly Aerosol Optical Depth from Satellite Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2942–2956. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Space Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.M. Desert Dust and Monsoon Rainfall. Nat. Geosci. 2014, 7, 255–256. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, W.K.M.; Kim, K.-M. Impact of Snow Darkening by Deposition of Light-Absorbing Aerosols on Snow Cover in the Himalayas–Tibetan Plateau and Influence on the Asian Summer Monsoon: A Possible Mechanism for the Blanford Hypothesis. Atmosphere 2018, 9, 438. https://doi.org/10.3390/atmos9110438
Lau WKM, Kim K-M. Impact of Snow Darkening by Deposition of Light-Absorbing Aerosols on Snow Cover in the Himalayas–Tibetan Plateau and Influence on the Asian Summer Monsoon: A Possible Mechanism for the Blanford Hypothesis. Atmosphere. 2018; 9(11):438. https://doi.org/10.3390/atmos9110438
Chicago/Turabian StyleLau, William K. M., and Kyu-Myong Kim. 2018. "Impact of Snow Darkening by Deposition of Light-Absorbing Aerosols on Snow Cover in the Himalayas–Tibetan Plateau and Influence on the Asian Summer Monsoon: A Possible Mechanism for the Blanford Hypothesis" Atmosphere 9, no. 11: 438. https://doi.org/10.3390/atmos9110438
APA StyleLau, W. K. M., & Kim, K. -M. (2018). Impact of Snow Darkening by Deposition of Light-Absorbing Aerosols on Snow Cover in the Himalayas–Tibetan Plateau and Influence on the Asian Summer Monsoon: A Possible Mechanism for the Blanford Hypothesis. Atmosphere, 9(11), 438. https://doi.org/10.3390/atmos9110438