Seasonal Variations and Sources of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) in Chengdu, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Experimental Procedure
2.3. Quality Control
2.4. Diagnostic Ratios
2.5. Principal Component Analysis/Multiple Linear Regression (PCA/MLR)
3. Results and Discussion
3.1. Concentration of Total PAHs
3.2. Concentration of Individual PAHs
3.3. Sources of PAHs
3.3.1. Diagnostic Ratios
3.3.2. Principal Component Analysis
3.3.3. Principal Component Analysis Combined with Multiple Linear Regression
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Simcik, M.F.; Eisenreich, S.J.; Lioy, P.J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 1999, 33, 5071–5079. [Google Scholar] [CrossRef]
- Wilcke, W. Polycyclic Aromatic Hydrocarbons (PAHs) in soil-a Review. J. Plant. Nutr. Soil. Sci. 2000, 163, 229–248. [Google Scholar] [CrossRef]
- Baek, S.O.; Field, R.A.; Goldstone, M.E.; Kirk, P.W.; Lester, N.; Perry, R. A review of atmospheric polycyclic aromatic-hydrocarbons-sources, fate and behavior. Air. Soil. Pollut. 1991, 60, 279–300. [Google Scholar] [CrossRef]
- Li, A.; Jiang, J.K.; Scheff, P.A. Application of EPA CMB 8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environ. Sci. Technol. 2003, 37, 2958–2965. [Google Scholar] [CrossRef] [PubMed]
- Mordndi, M.T.; Daisey, J.M.; Lioyp, J. Development of amodified factor analysis/multiple regression model to apportion suspended particulate matter in a complex urban airshed. Atmos. Environ. 1987, 21, 1821–1831. [Google Scholar] [CrossRef]
- Zhang, S.C.; Zhang, W.; Wang, K.Y. Source apportionment of atmospheric polycyclic aromatic hydrocarbons in TSP in the southeastern suburb of Beijing, China. Acta. Sci. Circum. 2007, 27, 452–458. [Google Scholar]
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Tao, S. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China. Environ. Pollut. 2008, 156, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Kumata, H.; Zakaria, M.P. Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions. Atmos. Environ. 2002, 36, 611–618. [Google Scholar] [CrossRef]
- Mandalakis, M.; Tsapakis, M.; Tsoga, A. Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos. Environ. 2002, 36, 4023–4035. [Google Scholar] [CrossRef]
- Ma, W.L.; Li, Y.F.; Qi, H. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere 2010, 79, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Kim, Y.J.; Kang, C.H. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos. Environ. 2002, 36, 2917–2924. [Google Scholar] [CrossRef]
- Tasdemir, Y.; Esen, F. Urban air PAHs: Concentrations, temporal changes and gas/particle partitioning at a traffic site in Turkey. Atmos. Res. 2007, 84, 1–12. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Li, X.D.; Qi, S.H.; Liu, G.Q.; Peng, X.Z. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci. Total Environ. 2006, 355, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.S.; Yin, H.L.; Wang, X.H.; Ye, C.X. Seasonal variation of PM10-bound PAHs in the atmosphere of Xiamen, China. Atmos. Res. 2007, 85, 429–441. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A.; Terelak, H. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 2008, 73, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Kavouras, I.G.; Koutrakis, P.; Tsapakis, M.; Lagoudaki, E.; Stephanou, E.G.; Von Baer, D.; Oyola, P. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ. Sci. Technol. 2001, 35, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Chen, J.; Qiao, X.; Wang, Z.; Yang, P.; Wang, D.; Ge, L. Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: Factor analysis with non-negative constraints combined with local source fingerprints. Atmos. Environ. 2009, 43, 2747–2753. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Cai, J.; Liu, Y.; Zheng, M. Atmospheric PAHs in North China: Spatial distribution and sources Research article. Sci. Total Environ. 2016, 565, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tian, F.; Yang, M.; Liu, C.; Li, Y.F. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China. Environ. Pollut. 2009, 157, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, G.; Zhang, J. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs Research article. Sci. Total Environ. 2015, 538, 180–190. [Google Scholar] [CrossRef] [PubMed]
Season | Gas | Particle | Total PAHs |
---|---|---|---|
Spring | 228.44 ± 90.3 | 106.94 ± 69.0 | 335.38 ± 154.5 |
Summer | 136.21 ± 40.5 | 38.53 ± 12.7 | 176.94 ± 48.2 |
Autumn | 172.26 ± 52.8 | 41.58 ± 17.5 | 213.84 ± 61.9 |
Winter | 322.76 ± 146.6 | 136.19 ± 65.2 | 458.95 ± 207.6 |
Annual average | 217.09 ± 115.9 | 82.00 ± 64.8 | 300.35 ± 176.6 |
PAHs | Spring | Summer | Autumn | Winter | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | |
Nap | 0.227 | 0.914 | −0.149 | 0.853 | 0.359 | 0.414 | 0.817 | −0.127 | 0.747 | 0.489 |
Acy | 0.469 | 0.858 | 0.174 | 0.817 | −0.168 | 0.403 | 0.883 | −0.165 | 0.894 | 0.283 |
Ace | 0.296 | 0.853 | 0.032 | 0.935 | −0.126 | 0.448 | 0.771 | −0.216 | 0.834 | 0.464 |
Flu | 0.211 | 0.874 | −0.133 | 0.946 | 0.201 | 0.467 | 0.866 | −0.081 | 0.865 | 0.404 |
Phe | 0.857 | 0.039 | 0.250 | 0.462 | 0.752 | 0.556 | 0.458 | 0.626 | 0.288 | 0.925 |
Ant | 0.650 | 0.543 | 0.114 | −0.348 | 0.578 | 0.728 | 0.456 | 0.306 | 0.914 | 0.323 |
Flua | 0.924 | 0.414 | 0.442 | 0.129 | 0.848 | 0.493 | −0.107 | 0.831 | 0.741 | 0.589 |
Pyr | 0.887 | 0.450 | 0.472 | 0.046 | 0.840 | 0.745 | −0.357 | 0.498 | 0.833 | 0.526 |
BaA | 0.696 | 0.576 | 0.686 | −0.374 | 0.352 | 0.928 | −0.175 | 0.273 | 0.867 | 0.475 |
Chr | 0.895 | 0.494 | 0.818 | 0.060 | 0.569 | 0.911 | −0.246 | 0.285 | 0.741 | 0.632 |
BbF | 0.820 | 0.389 | 0.933 | 0.049 | 0.178 | 0.920 | −0.236 | −0.245 | 0.741 | 0.612 |
BkF | 0.862 | 0.512 | 0.956 | 0.000 | 0.158 | 0.851 | −0.461 | −0.276 | 0.825 | 0.527 |
BaP | 0.685 | 0.685 | 0.876 | 0.237 | 0.181 | 0.945 | −0.137 | −0.285 | 0.872 | 0.455 |
IcdP | 0.823 | 0.632 | 0.969 | −0.109 | 0.153 | 0.864 | −0.214 | −0.374 | 0.912 | 0.411 |
DahA | 0.779 | 0.613 | 0.921 | −0.055 | 0.309 | 0.946 | −0.199 | −0.335 | 0.859 | 0.441 |
Bghip | 0.838 | 0.522 | 0.964 | −0.071 | 0.199 | 0.853 | −0.238 | −0.379 | 0.927 | 0.379 |
Explained variance (%) | 92.6% | 93.6% | 95.3% | 94.7% |
Relevant Parameter | Multiple Regression Equation | Rate of Contribution (%) | p | R2 |
---|---|---|---|---|
Spring | y = 0.650 x1 + 0.590 x2 | x1 (coal): 52% | 0.000 | 0.999 |
x2 (coke + motor vehicle exhaust): 48% | ||||
Summer | y = 0.301 x1 + 0.232 x2 + 0.579 x3 | x1 (motor vehicle exhaust): 27% | 0.001 | 0.991 |
x2 (coke): 21% | 0.001 | |||
x3 (coal): 52% | 0.000 | |||
Autumn | y = 0.406 x1 + 0.340 x2 + 0.707 x3 | x1 (motor vehicle exhaust): 34% | 0.000 | 0.990 |
x2 (coke): 19% | ||||
x3 (coal): 47% | ||||
Winter | y = 0.724 x1 + 0.514 x2 | x1 (coal): 58% | 0.001 | 0.998 |
x2 (motor vehicle exhaust): 42% | 0.000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Xu, W.; Cheng, H. Seasonal Variations and Sources of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) in Chengdu, China. Atmosphere 2018, 9, 63. https://doi.org/10.3390/atmos9020063
Yang J, Xu W, Cheng H. Seasonal Variations and Sources of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) in Chengdu, China. Atmosphere. 2018; 9(2):63. https://doi.org/10.3390/atmos9020063
Chicago/Turabian StyleYang, Ju, Wenlai Xu, and Huiyu Cheng. 2018. "Seasonal Variations and Sources of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) in Chengdu, China" Atmosphere 9, no. 2: 63. https://doi.org/10.3390/atmos9020063
APA StyleYang, J., Xu, W., & Cheng, H. (2018). Seasonal Variations and Sources of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) in Chengdu, China. Atmosphere, 9(2), 63. https://doi.org/10.3390/atmos9020063