Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Estimating Greenhouse Gas (GHG) Emissions
2.4. Estimating Activity Data
2.4.1. Burned Area (BA)
2.4.2. Burning Efficiency (BE)
2.5. Ground Observation and Questionnaire Survey
3. Results
3.1. Meteorological Data
3.2. Burning Seasons of Grain Maize, Seed Maize and Integrated Farming
3.3. Method of Removing Residues from the Field
3.4. Times of the Day at Which Crop Residues Were Burnt
3.5. GHG Emissions from Burning Grain Maize and Seed Maize Residues
3.6. GHG Emissions from Burning Crop Residues under the Integrated Farming System
3.7. Chemical Components Characteristics in PM2.5
4. Discussions
4.1. Prescribed Agricultural Burning Behaviors
4.2. Field Burning of Crop Residues and GHG Emissions
4.3. Chemical Compositions of PM2.5 Emissions from Agricultural Burning
4.4. Comparisons of GHG Emissions among Grain Maize, Seed Maize and Integrated Farming
4.5. Proposed Policies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, S.; He, H.; Lu, S.; Chen, D.; Zhu, J. Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China. Atmos. Environ. 2008, 42, 1961–1969. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, M.; Liua, Y.; William, K.; Paul, G.; Lia, X.; Lua, S. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmos. Environ. 2007, 41, 8380–8390. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, X.; Gong, S.; Zheng, F. Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning. J. Environ. Sci. 2008, 20, 50–55. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, D.; Chen, J.; Ye, X.; Wang, S.X.; Hao, J.; Wang, L.; Zhang, R.; An, Z. Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. Environ. Sci. Technol. 2011, 45, 5477–5482. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J.; Andreae, M.O. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Andreae, M.O.; Artaxo, P.; Fischer, H.; Freitas, S.R.; Grégoire, J.M.; Hansel, A.; Hoor, P.; Kormann, R.; Krejci, R.; Lange, L.; et al. Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophys. Res. Lett. 2001, 28, 951–954. [Google Scholar] [CrossRef]
- Chang, D.; Song, Y. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data. Atmos. Chem. Phys. 2010, 10, 2335–2351. [Google Scholar] [CrossRef]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.H.; Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Planets 2004, 109, D14203. [Google Scholar] [CrossRef]
- Garivait, S.; Bonnet, S.; Sorapipith, V.; Chaiyo, U. Estimation of air pollutant emission from open biomass burning in Thailand. In Proceedings of the Joint International Conference on Sustainable Energy and Environment, Phachuapkhirikhan, Thailand, 10–14 October 2004. [Google Scholar]
- Tipayarat, Y.; Sajor, E.E. State simplification, heterogeneous cause of vegetation fires and implication on local haze management: Case study in Thailand. Environ. Dev. Sustain. 2012, 14, 1047–1064. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Air Quality Guidelines for Europe, 2nd ed.; Chapter 7.3 Particulate Matter; Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- Dockery, D.W.; Stone, P.H. Cardiovascular risks from fine particulate air pollution. N. Engl. J. Med. 2007, 356, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.R.; Avol, E.L.; Edwards, S.A.; Shamoo, D.A.; Peng, R.C.; Linn, W.S.; Hackney, J.D. Controlled exposure of volunteers to respirable carbon and sulfuric acid aerosols. J. Air Waste Manag. Assoc. 1992, 42, 770–776. [Google Scholar] [CrossRef]
- Office of Agricultural Economics (OAE). Agricultural Statistic in Thailand, 2014; OAE: Bangkok, Thailand, 2015. [Google Scholar]
- United Nations Development Programme (UNDP). Innovation: Thailand Maize. 2015. Available online: http://www.th.undp.org (accessed on 8 January 2018).
- Mittal, S.K.; Susheel, K.; Singh, N.; Agarwal, R.; Awasthi, A.; Gupta, P.K. Ambient air quality during wheat and rice crop stubble burning episodes in Patiala. Atmos. Environ. 2009, 43, 238–244. [Google Scholar] [CrossRef]
- Oanh, N.T.K.; Leelasakultum, K. Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning. Sci. Total Environ. 2011, 409, 2261–2271. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of Air Pollutants from Crop Residue Burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef]
- Khamkaew, C.; Chantara, S.; Wiriya, W. Atmospheric PM2.5 and its elemental composition from near source and receptor sites during open burning season in Chiang Mai, Thailand. Int. J. Environ. Sci. Dev. 2016, 7, 436–440. [Google Scholar] [CrossRef]
- Greenpeace. Greenpeace’s City Rankings for PM2.5 in Thailand. 2017. Available online: https://greenpeace.or.th/s/right-to-clean-air/PM2.5CityRankingsREV.pdf (accessed on 28 March 2018).
- Walker, A. Forests and Water in Northern Thailand. Resource Management in Asia-Pacific Working Paper No. 37. Resource Management in Asia-Pacific Program; The Australian National University: Canberra, Australia, 2002. [Google Scholar]
- Kuraji, K.; Punyatrong, K.; Suzuki, M. Altitudinal increase in rainfall in the Mae Chaem watershed, Thailand. J. Meteorol. Soc. Jpn. 2001, 79, 353–363. [Google Scholar] [CrossRef]
- Thomas, D.; Preechapanya, P.; Saipothong, P. Landscape agroforestry in upper tributary watersheds of northern Thailand. J. Agric. 2002, 18, S255–S302. [Google Scholar]
- Walker, A. Agricultural transformation and the politics of hydrology in northern Thailand. Dev. Chang. 2003, 34, 941–964. [Google Scholar] [CrossRef]
- Praneetvatakul, S.; Janekarnkij, P.; Potchanasin, C.; Prayoonwong, K. Assessing the sustainability of agriculture a case of Mae Chaem catchment, northern Thailand. Environ. Int. 2001, 27, 103–109. [Google Scholar] [CrossRef]
- Pinthong, J.; Thomsen, A.; Rasmussen, P.; Iversen, B.V. Studies of Soil and Water Dynamics. Approach and Methodology; Working Paper No. 2; Research Center on Forest and People in Thailand: Tjele, Denmark, 2000. [Google Scholar]
- Royal Forest Department. General Information: The National Forest Management Center 26, Mae Chaem Forest 2, Chiang Mai, Forest Resource Management Bureau 1 (Chiang Mai) and The National Forest Management Bureau; Royal Forest Department, Ministry of Natural Resources and Environment: Bangkok, Thailand, 2016. (In Thai)
- Crutzen, P.J.; Heidt, L.E.; Krasnec, J.P.; Pollock, W.H.; Seiler, W. Biomass burning as a source of the atmospheric gases CO, H2, N2O, NO, CH3C1 and COS. Nature 1979, 282, 253–256. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; Reference Manual; IPCC Guidelines for National Greenhouse Gas Inventories: Geneva, Switzerland, 1996; Volume 3. [Google Scholar]
- Li, X.; Wang, S.; Duan, L.; Hao, J.; Li, C.; Chen, Y.; Yang, L. Particulate and Trace Gas Emissions from Open Burning of Wheat Straw and Corn Stover in China. Environ. Sci. Technol. 2007, 41, 6052–6058. [Google Scholar] [CrossRef] [PubMed]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Jenkins, B.M.; Jones, D.; Turn, S.Q.; Williams, R.B. Particle concentrations, gas-particle partitioning, and species intercorrelations for Polycyclic Aromatic Hydrocarbons (PAH) emitted during biomass burning. Atmos. Environ. 1996, 30, 3825–3835. [Google Scholar] [CrossRef]
- Lee, D.S.; Atkins, D.H.F. Atmospheric ammonia emission from agricultural waste combustion. Geophys. Res. Lett. 1994, 21, 281–284. [Google Scholar] [CrossRef]
- Turn, S.Q.; Jenkins, B.M.; Chow, J.C.; Pritchett, L.C.; Campbell, D.; Cahill, T.; Whalen, S.A. Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. J. Geophys. Res. 1997, 102, 3683–3699. [Google Scholar] [CrossRef]
- Indiana Department of Natural Resources. Prescribed Burning: Habitat Management Fact Sheet; Indiana Division of Fish and Wildlife: Indianapolis, IN, USA, 2005. [Google Scholar]
- Pechony, O.; Shindell, D.T. Fire parameterization on a global scale. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Bistinas, I.; Harrison, S.P.; Prentice, I.C.; Pereira, J.M.C. Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences 2014, 11, 5087–5101. [Google Scholar] [CrossRef]
- Chantara, S.; Sillapapiromsuk, S.; Wiriya, W. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005–2009), their possible sources and relation to air mass movement. Atmos. Environ. 2012, 60, 88–98. [Google Scholar] [CrossRef]
- Pollution Control Department (PCD). Manual Report: Air Quality Data Monitoring. Pollution Control Department, 2015. Available online: http://aqmthai.com/ (accessed on 13 April 2016).
- Sillapapiromsuk, S.; Chantara, S.; Tengjaroenkul, U.; Prasitwattanaseree, S.; Prapamontol, T. Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions. Chemosphere 2013, 93, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Kutcher, H.R.; Malhi, S.S. Residue burning and tillage effects on diseases and yield of barley (Hordeum vulgare) and canola (Brassica napus). Soil Tillage Res. 2010, 109, 153–160. [Google Scholar] [CrossRef]
- Gonçalves, C.; Evtyugina, M.; Alves, C.; Monteiro, C.; Pio, C.; Tomé, M. Organic particulate emissions from field burning of garden and agriculture residues. Atmos. Res. 2011, 101, 666–680. [Google Scholar] [CrossRef]
- Meesubkwang, S. Chiang Mai’s Polluted Air: Chiang Mai’s Polluted Air. 2007. Available online: http://www.chiangmai-mail.com/212/news.shtml (accessed on 8 January 2018).
- Kludze, H.; Deen, B.; Weersink, A.; Van Acker, R.; Janovicek, K.; De Laporte, A.; McDonald, I. Estimating sustainable crop residue removal rates and costs based on soil organic matter dynamics and rotational complexity. Biomass Bioenergy 2013, 56, 607–618. [Google Scholar] [CrossRef]
- Estrellan, C.R.; Iino, F. Toxic emissions from open burning. Chemosphere 2010, 80, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Reche, C.; Amato, F.; Alastuey, A.; Querol, X.; Moreno, T.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; et al. Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. Atmos. Environ. 2013, 72, 81–88. [Google Scholar] [CrossRef]
- Agarwal, R.; Awasthi, A.; Singh, N.; Gupta, P.K.; Mittal, S.K. Effects of exposure to rice-crop residue burning smoke on pulmonary functions and Oxygen Saturation level of human beings in Patiala (India). Sci. Total Environ. 2012, 429, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Granged, A.J.P.; Zavala, L.M.; Jordán, A.; Bárcenas-Moreno, G. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma 2011, 164, 85–94. [Google Scholar] [CrossRef]
- Haider, M.Z. Determinants of rice residue burning in the field. J. Environ. Manag. 2013, 128, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.-F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Vadrevu, K.P.; Giglio, L.; Justice, C. Satellite based analysis of fire-carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmos. Environ. 2013, 64, 179–191. [Google Scholar] [CrossRef]
- Gupta, P.K.; Sahai, S. Residues open burning in rice-wheat cropping system in India: An agenda for conservation of environment and agricultural conservation. In Conservation Agriculture: Status and Prospects; Abrol, I.P., Gupta, R.K., Malik, R.K., Eds.; Centre for Advancement of Sustainable Agriculture, National Agriculture Science Centre: New Delhi, India, 2005; pp. 50–54. [Google Scholar]
- Kumar, P.; Kumar, S.; Joshi, L. Chapter 2: The Extent and Management of Crop Stubble. In Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change. Environmental Science; Nautiyal, S., Rao, K.S., Kaechele, H., Raju, K.V., Schaldach, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Singh, R.P.; Dhaliwal, H.S.; Sidhu, H.S.; Manpreet-Singh, Y.S.; Blackwell, J. Economic assessment of the Happy Seeder for Rice-Wheat Systems in Punjab, India. In Proceedings of the AARES 52nd Annual Conference, Canberra, Australia, 5–8 February 2008. [Google Scholar]
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009, 157, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Gullett, B.; Touati, A. PCDD/F emissions from burning wheat and rice field residue. Atmos. Environ. 2003, 37, 4893–4899. [Google Scholar] [CrossRef]
- Lin, L.-F.; Lee, W.-J.; Li, H.-W.; Wang, M.-S.; Chang-Chien, G.-P. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 2007, 68, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management options for reducing CO2 Emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Boonlertnirun, K.; Jompuk, C. Nitrogen use efficiency and low nitrogen tolerance in waxy corn. Khon Kaen Agric. J. 2011, 39, 231–240. [Google Scholar]
- Heard, J.; Hay, D. Typical nutrient content, uptake pattern and Carbon: Nitrogen ratios of prairie crops. In Proceedings of the Manitoba Agronomists Conference, Winnipeg, MB, Canada, 12–13 December 2006. [Google Scholar]
- Gupta, P.K.; Sahai, S.; Singh, N.; Dixit, C.K.; Singh, D.P.; Sharma, C.; Tiwari, M.K.; Gupta, R.K.; Garg, S.C. Residue burning in rice-wheat cropping system: Causes and implications. Curr. Sci. 2004, 87, 1713–1717. [Google Scholar]
- Khanal, S.; Anex, R.P.; Gelder, B.K.; Wolter, C. Nitrogen balance in Iowa and the implications of corn-stover harvesting. Agric. Ecosyst. Environ. 2014, 183, 21–30. [Google Scholar] [CrossRef]
- Tzanis, C.; Tsivola, E.; Efstathiou, M.; Varotsos, C. Forest fires pollution impact on the solar UV irradiance at the ground. Fresenius Environ. Bull. 2009, 18, 2151–2158. [Google Scholar]
- Chow, J.C.; Watson, J.G. Air quality management of multiple pollutants and multiple effects. Air Qual. Clim. Chang. 2011, 45, 26–32. [Google Scholar]
- Fiore, A.M.; Naik, V.; Leibensperger, E.M. Air quality and climate connections. J. Air Waste Manag. Assoc. 2015, 65, 645–685. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Song, Y.; Liu, M.X.; Archer-Nicholls, S.; Lowe, D.; McFiggans, G.; Xu, T.T.; Du, P.; Li, J.F.; Wu, Y.S.; et al. Direct radiative effect of carbonaceous aerosols from crop residue burning during the summer harvest season in East China. Atmos. Chem. Phys. 2017, 17, 5205–5219. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Wu, F.; Yuan, X.; Zhang, Y. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 2007, 84, 311–322. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. Chemical characteristics of rainwater collected at a western site of Jordan. Atmos. Res. 2009, 91, 53–61. [Google Scholar] [CrossRef]
- Huang, D.; Xu, Y.; Peng, P.; Zhang, H.; Lan, J. Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: Comparison with precipitation in other major Chinese cities. Environ. Pollut. 2009, 157, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Liu, G.; Zhou, L.; Li, J.; Xu, H.; Wu, D. Emission of organic carbon, elemental carbon and water-soluble ions from crop straw burning under flaming and smoldering conditions. Particuology 2017, 31, 181–190. [Google Scholar] [CrossRef]
- Long, X.; Tie, X.X.; Cao, J.J.; Huang, R.J.; Feng, T.; Li, N.; Zhao, S.Y.; Tian, J.; Li, G.H.; Zhang, Q. Impact of crop field burning and mountains on heavy haze in the North China Plain: A case study. Atmos. Chem. Phys. 2016, 16, 9675–9691. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.X.; Fu, X.; Watson, J.G.; Jiang, J.K.; Fu, Q.Y.; Chen, C.H.; Xu, B.Y.; Yu, J.S.; Chow, J.C. Impact of biomass burning on haze pollution in the Yangtze River Delta, China: A case study of summer in 2011. Atmos. Chem. Phys. 2014, 14, 4573–4585. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.X.; Cao, J.J.; Arimoto, R.; Han, Z.W.; Zhang, R.J.; Han, Y.M.; Liu, S.X.; Okuda, T.; Nakao, S.; Tanaka, S. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos. Environ. 2009, 43, 2911–2918. [Google Scholar] [CrossRef]
- Park, S.S.; Hong, S.B.; Jung, Y.G.; Lee, J.H. Measurements of PM10 aerosol and gas-phase nitrous acid during fall season in a semi-urban atmosphere. Atmos. Environ. 2004, 38, 293–304. [Google Scholar] [CrossRef]
- Vinitketkumnuen, U.; Kalayanamitra, K.; Chewonaria, T.; Kamens, R. Particulate matter, PM10 & PM2.5 levels and airborne mutagenicity in Chiang Mai, Thailand. Mutat. Res. 2002, 519, 121–131. [Google Scholar] [PubMed]
- Chantara, S.; Wangkarn, S.; Tengjaroenkul, U.; Sangchang, W.; Rayanakorn, M. Chemical analysis of airborne particulates for air pollutants in Chiang Mai and Lumphun Provinces, Thailand. Chiang Mai. J. Sci. 2009, 36, 123–135. [Google Scholar]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 38, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Yang, Y.; Ruan, J.; Xu, Z. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards. Environ. Sci. Technol. 2012, 46, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Huang, Y.; Long, Z.; Ni, S.; Shi, Z.; Zhang, C. Characteristics, sources and health risk assessment of trace metals in PM10 in Panzhihua, China. Bull. Environ. Contam. Toxicol. 2016, 98, 76–83. [Google Scholar] [CrossRef] [PubMed]
Name of Pollutant | Unit | EF (Open Burning) | Source |
---|---|---|---|
CO2 | g kg−1dm | 1515.00 | Andrea and Merlet [31] |
CO | g kg−1dm | 38.80 | Jenkins et al. [32] |
CH4 | g kg−1dm | 2.70 | Andrea and Merlet [31] |
N2O | g kg−1dm | 0.07 | Andrea and Merlet [31] |
NH3 | g kg−1dm | 2.40 | Lee and Atkins [33] |
NOx | g kg−1dm | 1.80 | Jenkins et al. [32] |
Non-methane volatile organic compounds (NMVOCs) | g kg−1dm | 4.50 | Jenkins et al. [32] |
SOx | g kg−1dm | 0.20 | Jenkins et al. [32] |
Fine particulate matter (PM2.5) | g kg−1dm | 6.00 | Jenkins et al. [32] |
PM10 | g kg−1dm | 6.20 | Jenkins et al. [32] |
Black carbon (BC) | mg kg−1dm | 750.00 | Turn et al. [34] |
Sub-District | Land-use Pattern and Varieties | CO2 | CO | CH4 | N2O | NOx | NMVOCs | SOx | PM2.5 | PM10 | BC |
---|---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 year−1 | |||||||||||
Kong Khaek | shallots, glutinous rice, grain maize, seed maize | 3607.1 | 92.4 | 6.4 | 0.2 | 4.3 | 10.7 | 0.5 | 14.3 | 14.8 | 1.8 |
Tha Pha | pumpkin, grain maize | 5908.5 | 151.3 | 10.5 | 0.3 | 7.0 | 17.6 | 0.8 | 23.4 | 24.2 | 2.9 |
Ban Thap | grain maize | 5681.3 | 145.5 | 10.1 | 0.3 | 6.8 | 16.9 | 0.8 | 22.5 | 23.3 | 2.8 |
shallots, upland rice, grain maize | 12,120.0 | 310.4 | 21.6 | 0.6 | 14.4 | 36.0 | 1.6 | 48.0 | 49.6 | 6.0 | |
Mae Daet | grain maize | 22,725.0 | 582.0 | 40.5 | 1.1 | 27.0 | 67.5 | 3.0 | 90.0 | 93.0 | 11.3 |
Mae Na Chon | grain maize | 6775.3 | 173.5 | 12.1 | 0.3 | 8.1 | 20.1 | 0.9 | 26.8 | 27.8 | 3.4 |
Mae Suek | grain maize | 12,338.1 | 316.0 | 22.0 | 0.6 | 14.7 | 36.6 | 1.6 | 48.9 | 50.5 | 6.1 |
Average | 9879.3 | 253.0 | 17.6 | 0.5 | 11.7 | 29.3 | 1.3 | 39.1 | 40.4 | 4.9 |
Sub-District | Land-use Pattern and Varieties | CO2 | CO | CH4 | N2O | NOx | NMVOCs | SOx | PM2.5 | PM10 | BC |
---|---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 year−1 | |||||||||||
Kong Khaek | shallots, pumpkin, seed maize | 9561.6 | 244.9 | 17.1 | 0.4 | 11.4 | 28.4 | 1.3 | 37.9 | 39.1 | 4.8 |
Chang Khoeng | shallots, seed maize | 12,271.5 | 314.3 | 21.9 | 0.6 | 14.6 | 36.4 | 1.6 | 48.6 | 50.3 | 6.1 |
Tha Pha | seed maize | 18,066.4 | 462.7 | 32.2 | 0.8 | 21.5 | 53.7 | 2.4 | 71.6 | 73.9 | 8.9 |
Ban Thap | seed maize | 21,829.3 | 559.1 | 38.9 | 1.0 | 25.9 | 64.8 | 2.9 | 86.4 | 89.3 | 10.8 |
Pang Hin Fon | seed maize | 20,009.4 | 2083.8 | 145.0 | 3.8 | 96.7 | 241.7 | 10.8 | 322.3 | 333.0 | 40.3 |
Mae Na Chon | seed maize | 18,455.8 | 472.7 | 32.9 | 0.8 | 21.9 | 54.8 | 2.4 | 73.1 | 75.6 | 9.1 |
Mae Suek | seed maize | 17,768.1 | 455.1 | 31.7 | 0.9 | 21.1 | 52.8 | 2.3 | 70.4 | 72.7 | 8.8 |
Average | 16,851.7 | 656.1 | 45.7 | 1.2 | 30.4 | 76.1 | 3.4 | 101.5 | 104.8 | 12.7 |
Sub-District | Land-use Pattern and Varieties | CO2 | CO | CH4 | N2O | NOx | NMVOCs | SOx | PM2.5 | PM10 | BC |
---|---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 year−1 | |||||||||||
Kong Khaek | 888 grain maize | 1212.0 | 31.0 | 2.2 | 0.1 | 1.4 | 3.6 | 0.12 | 4.8 | 5.0 | 0.6 |
888 grain maize, shallots | - | - | - | - | - | - | - | - | - | - | |
Chaem Luang | peanuts, red beans | 6817.5 | 174.6 | 12.1 | 0.3 | 8.1 | 20.3 | 0.9 | 27.0 | 27.9 | 3.4 |
Japanese pumpkin, peanuts | 5113.1 | 130.9 | 9.1 | 0.3 | 6.1 | 15.2 | 0.7 | 20.3 | 20.9 | 2.6 | |
Japanese pumpkin, Japanese pumpkin | 378.8 | 9.7 | 0.7 | 0.0 | 0.4 | 1.1 | 0.1 | 1.5 | 1.6 | 0.2 | |
Japanese pumpkin, red beans | 5681.3 | 145.5 | 10.1 | 0.3 | 6.8 | 16.9 | 0.8 | 22.5 | 23.3 | 2.8 | |
peanuts, peanuts | 511.3 | 13.1 | 0.9 | 0.0 | 0.6 | 1.5 | 0.1 | 2.0 | 2.1 | 0.3 | |
red beans, avocado, pumpkin | - | - | - | - | - | - | - | - | - | - | |
rice, red bean, avocado, coffee bean | - | - | - | - | - | - | - | - | - | - | |
lettuce, potato, bog choy, parsley | - | - | - | - | - | - | - | - | - | - | |
strawberry 329, strawberry 80 | - | - | - | - | - | - | - | - | - | - | |
Chang Khoeng | pumpkin, pumpkin | - | - | - | - | - | - | - | - | - | - |
Japanese pumpkin, peanuts | - | - | - | - | - | - | - | - | - | - | |
Ban Chan | corn, peanuts | - | - | - | - | - | - | - | - | - | - |
pear, avocado, plum, cape gooseberry | - | - | - | - | - | - | - | - | - | - | |
kale, coriander, rice, Japanese pumpkin | - | - | - | - | - | - | - | - | - | - | |
cabbage, lettuce, rice, Japanese pumpkin | - | - | - | - | - | - | - | - | - | - | |
Japanese pumpkin, vegetable salad, cabbage, coriander, vocado, passion fruit, pear | - | - | - | - | - | - | - | - | - | - | |
Nakhon Sawan 3 grain maize, red beans | 3933.2 | 100.8 | 7.0 | 0.2 | 4.7 | 11.7 | 0.5 | 15.6 | 16.1 | 1.9 | |
888 grain maize, shallots | 26,512.5 | 679.0 | 47.3 | 1.3 | 31.5 | 78.8 | 3.5 | 105.0 | 108.5 | 13.1 | |
Ban Thap | strawberry 329, strawberry 80 | - | - | - | - | - | - | - | - | - | - |
strawberry 80, strawberry 329, cabbage | - | - | - | - | - | - | - | - | - | - | |
Mae Daet | strawberry 80, strawberry 329, napa cabbage | - | - | - | - | - | - | - | - | - | - |
strawberry 80, strawberry 329 | - | - | - | - | - | - | - | - | - | - | |
NK328 grain maize, NK62 grain maize, Japanese pumpkin | - | - | - | - | - | - | - | - | - | - | |
potatoes, avocado, grape, cabbage | - | - | - | - | - | - | - | - | - | - | |
Mae Suek | green grapes, seed maize | - | - | - | - | - | - | - | - | - | - |
cabbage, potatoes, avocado, grapes | - | - | - | - | - | - | - | - | - | - | |
NK grain maize, pioneer grain maize, 888 grain maize, napa cabbage, arabica coffee | 927.6 | 23.8 | 1.6 | 0.1 | 1.1 | 2.8 | 0.1 | 3.7 | 3.8 | 0.4 | |
Average | 6383.4 | 163.5 | 11.4 | 0.3 | 7.6 | 19.0 | 0.8 | 25.3 | 26.1 | 3.2 |
Chemical Species | Grain Maize (g ha−1 year−1) | Seed Maize (g ha−1 year−1) | Integrated Farming System (g ha−1 year−1) |
---|---|---|---|
OC | 152.59 | 395.61 | 98.48 |
EC | 13.69 | 35.50 | 8.84 |
Cl− | 105.64 | 273.88 | 68.18 |
NO3− | 2.74 | 7.10 | 1.77 |
SO42− | 8.61 | 22.32 | 5.56 |
NH4+ | 46.95 | 121.73 | 30.30 |
K+ | 39.13 | 101.44 | 25.25 |
Al | 0.00016 | 0.00043 | 0.00011 |
Ca | 0.00027 | 0.00070 | 0.00017 |
Fe | 0.00005 | 0.00014 | 0.00004 |
Si | 0.00021 | 0.00055 | 0.00014 |
Mg | 0.00021 | 0.00055 | 0.00014 |
K | 0.03169 | 0.08216 | 0.02045 |
Na | 0.00078 | 0.00203 | 0.00051 |
S | 0.00309 | 0.00801 | 0.00199 |
Sc | 0.00027 | 0.00071 | 0.00018 |
Ti | 0.00548 | 0.01420 | 0.00354 |
V | 0.00391 | 0.01014 | 0.00253 |
Mn | 0.00509 | 0.01319 | 0.00328 |
Co | 0.00016 | 0.00041 | 0.00010 |
Ni | 0.00133 | 0.00345 | 0.00086 |
Zn | 0.00110 | 0.00284 | 0.00071 |
Ga | 0.00012 | 0.00030 | 0.00008 |
As | 0.00270 | 0.00700 | 0.00174 |
Se | 0.00231 | 0.00598 | 0.00149 |
Sr | 0.00333 | 0.00862 | 0.00215 |
Zr | 0.00157 | 0.00406 | 0.00101 |
Mo | 0.00027 | 0.00071 | 0.00018 |
Ag | 0.00070 | 0.00183 | 0.00045 |
Cd | 0.00274 | 0.00710 | 0.00177 |
Sb | 0.00020 | 0.00051 | 0.00013 |
Ba | 0.00102 | 0.00264 | 0.00066 |
Tl | 0.00035 | 0.00091 | 0.00023 |
Pb | 0.04304 | 0.11158 | 0.02778 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunrat, N.; Pumijumnong, N.; Sereenonchai, S. Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand. Atmosphere 2018, 9, 145. https://doi.org/10.3390/atmos9040145
Arunrat N, Pumijumnong N, Sereenonchai S. Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand. Atmosphere. 2018; 9(4):145. https://doi.org/10.3390/atmos9040145
Chicago/Turabian StyleArunrat, Noppol, Nathsuda Pumijumnong, and Sukanya Sereenonchai. 2018. "Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand" Atmosphere 9, no. 4: 145. https://doi.org/10.3390/atmos9040145
APA StyleArunrat, N., Pumijumnong, N., & Sereenonchai, S. (2018). Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand. Atmosphere, 9(4), 145. https://doi.org/10.3390/atmos9040145