Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Backward Lagrangian Stochastic Dispersion Model
- For the numerical discretization, the mixed implicit-explicit Euler scheme described in Flesch et al. [19] is used.
- The trajectories are reflected perfectly at an effective ground level, taken as the level of the roughness length above the displacement height , such that the covariance of the wind components is retained.
- The initialization of the wind components at release from the receptor location is done using an orthogonal projection procedure (http://stats.stackexchange.com/questions/15011/generate-a-random-variable-with-a-defined-correlation-to-an-existing-variable) that has been adapted for three correlated components. This guarantees a Gaussian distribution of initial wind components with a covariance matrix given by:
- The theoretical wind profile in the model is extended by an additional term and defined according to MOST:
2.2. Dry Deposition Modelling
2.2.1. Basic Principle
2.2.2. Integration of Dry Deposition in the bLS Model
2.3. Structure and Implementation of the bLSmodelR
2.4. NH3 Release Experiment
2.4.1. Experimental Site
2.4.2. Experimental Site
2.4.3. Dispersion Model Input
2.4.4. Concentration Measurement
2.4.5. Background Concentration
2.4.6. Recovered Fraction of the Tracer Gas
2.4.7. Surface Deposition Velocity
3. Results
3.1. Environmental Data
3.1.1. Meteorological Conditions and Dispersion Parameters
3.1.2. SO2 Plume
3.2. NH3 Concentration
3.3. Recovered Fractions of NH3 without Deposition Modelling
3.4. Canopy Resistance and Surface Deposition Velocity
4. Discussion
4.1. Recovered Fraction of NH3 without Deposition Modelling
- the higher sensitivity of to errors in the calculated average wind direction at 70 m downwind of the source,
- measurement at the plume edge (Figure 8) and with that:
- the higher sensitivity of due to the smaller increase in the measured concentration above the background concentration (resulting in a higher sensitivity to the interpolation of the background concentration and to the concentration measurement itself); and
- the higher sensitivity of due to the smaller value of .
4.2. Deposition Modelling
5. Conclusions
- the net emission from the footprint-related area (comprising the field of interest as well as the surrounding area);
- the net emission from confined areas (the field of interest with well-defined boundaries); and
- the net emission from hot spots within such an area (e.g., urine patches in a pasture field as investigated in Bell et al. [34]).
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Interval | Time Start (GMT + 1) | (m s−1) | (m) | (m) | (-) | (-) | (-) | (°) | (-) | Rb (s m−1) | (s m−1) | (µg m−3) | (-) | (s m−1) | (cm s−1) |
near/bottom, fetch: 15 m, height: 0.5 m above ground level, path length (one way): 36 m | |||||||||||||||
nb_1 | 10h40 | 0.17 | 0.004 | −2.8 | 4.2 | 5.1 | 1.70 | 68 | 4.7 | 15 | 0.00218 | 35.7 | 0.73 | 81 | 1.0 |
nb_2 | 10h50 | 0.20 | 0.003 | −4.9 | 3.9 | 3.3 | 1.42 | 67 | 4.0 | 13 | 0.00242 | 40.6 | 0.75 | 79 | 1.1 |
nb_3 | 11h00 | 0.20 | 0.007 | −4.5 | 3.9 | 4.9 | 1.50 | 76 | 4.3 | 15 | 0.00213 | 43.4 | 0.92 | 399 | 0.2 |
nb_4 | 11h10 | 0.22 | 0.013 | −4.2 | 3.7 | 4.4 | 1.34 | 60 | 3.6 | 16 | 0.00216 | 45.7 | 0.95 | 734 | 0.1 |
nb_5 | 11h20 | 0.25 | 0.016 | −5.7 | 4.0 | 4.4 | 1.31 | 67 | 3.7 | 16 | 0.00196 | 43.1 | 0.99 | 2702 | 0.0 |
nb_6 | 11h30 | 0.23 | 0.024 | −4.9 | 4.6 | 4.9 | 1.19 | 76 | 3.2 | 18 | 0.00192 | 38.1 | 0.89 | 347 | 0.3 |
nb_7 | 11h40 | 0.19 | 0.005 | −2.7 | 4.3 | 3.9 | 1.60 | 73 | 4.2 | 15 | 0.00223 | 39.1 | 0.79 | 114 | 0.8 |
nb_8 | 11h50 | 0.18 | 0.017 | −5.0 | 3.9 | 3.4 | 1.52 | 74 | 4.5 | 20 | 0.00244 | 49.0 | 0.90 | 357 | 0.3 |
nb_9 | 12h00 | 0.22 | 0.018 | −6.2 | 3.1 | 4.0 | 1.25 | 103 | 3.5 | 18 | 0.00154 | 26.9 | 0.79 | 101 | 0.8 |
nb_10 | 12h10 | 0.17 | 0.002 | −1.9 | 4.2 | 5.5 | 1.90 | 97 | 5.0 | 13 | 0.00151 | 39.3 | 1.17 | ∞ | 0.0 |
nb_11 | 12h20 | 0.16 | 0.004 | −1.3 | 4.6 | 6.9 | 1.86 | 82 | 4.1 | 15 | 0.00176 | 39.7 | 1.02 | ∞ | 0.0 |
nb_12 | 12h30 | 0.20 | 0.010 | −2.7 | 4.5 | 4.4 | 1.51 | 60 | 3.8 | 17 | 0.00202 | 37.2 | 0.83 | 166 | 0.5 |
nb_13 | 12h40 | 0.17 | 0.008 | −1.8 | 4.1 | 6.8 | 1.63 | 86 | 3.7 | 18 | 0.00173 | 34.0 | 0.88 | 320 | 0.3 |
nb_14 | 12h50 | 0.24 | 0.021 | −6.1 | 3.4 | 3.2 | 1.15 | 45 | 3.2 | 17 | 0.00250 | 46.5 | 0.84 | 167 | 0.5 |
nb_15 | 13h00 | 0.23 | 0.006 | −4.1 | 3.4 | 3.0 | 1.32 | 58 | 3.5 | 13 | 0.00236 | 48.5 | 0.92 | 425 | 0.2 |
nb_16 | 13h10 | 0.16 | 0.002 | −1.7 | 4.8 | 5.1 | 1.63 | 73 | 3.7 | 14 | 0.00245 | 40.3 | 0.74 | 107 | 0.8 |
nb_17 | 13h20 | 0.22 | 0.011 | −3.6 | 4.1 | 4.1 | 1.48 | 94 | 4.0 | 16 | 0.00157 | 30.3 | 0.87 | 207 | 0.4 |
nb_18 | 13h30 | 0.26 | 0.015 | −7.1 | 3.8 | 3.5 | 1.16 | 65 | 3.2 | 15 | 0.00228 | 47.6 | 0.94 | 560 | 0.2 |
Interval | Time Start (GMT + 1) | (m s−1) | (m) | (m) | (-) | (-) | (-) | (°) | (-) | Rb (s m−1) | (s m−1) | (µg m−3) | (-) | (s m−1) | (cm s−1) |
near/middle, fetch: 15 m, height: 1.25 m above ground level, path length (one way): 36 m | |||||||||||||||
nm_1 | 10h40 | 0.17 | 0.004 | −2.8 | 4.2 | 5.1 | 1.70 | 68 | 4.7 | 15 | 0.00124 | 20.7 | 0.75 | 63 | 1.3 |
nm_2 | 10h50 | 0.20 | 0.003 | −4.9 | 3.9 | 3.3 | 1.42 | 67 | 4.0 | 13 | 0.00108 | 20.3 | 0.84 | 124 | 0.7 |
nm_3 | 11h00 | 0.20 | 0.007 | −4.5 | 3.9 | 4.9 | 1.50 | 76 | 4.3 | 15 | 0.00110 | 23.8 | 0.98 | 1268 | 0.1 |
nm_4 | 11h10 | 0.22 | 0.013 | −4.2 | 3.7 | 4.4 | 1.34 | 60 | 3.6 | 16 | 0.00132 | 26.2 | 0.90 | 239 | 0.4 |
nm_5 | 11h20 | 0.25 | 0.016 | −5.7 | 4.0 | 4.4 | 1.31 | 67 | 3.7 | 16 | 0.00112 | 25.5 | 1.02 | ∞ | 0.0 |
nm_6 | 11h30 | 0.23 | 0.024 | −4.9 | 4.6 | 4.9 | 1.19 | 76 | 3.2 | 18 | 0.00110 | 23.6 | 0.96 | 925 | 0.1 |
nm_7 | 11h40 | 0.19 | 0.005 | −2.7 | 4.3 | 3.9 | 1.60 | 73 | 4.2 | 15 | 0.00120 | 22.7 | 0.85 | 161 | 0.6 |
nm_8 | 11h50 | 0.18 | 0.017 | −5.0 | 3.9 | 3.4 | 1.52 | 74 | 4.5 | 20 | 0.00155 | 27.2 | 0.79 | 80 | 1.0 |
nm_9 | 12h00 | 0.22 | 0.018 | −6.2 | 3.1 | 4.0 | 1.25 | 103 | 3.5 | 18 | 0.00098 | 15.4 | 0.70 | 38 | 1.8 |
nm_10 | 12h10 | 0.17 | 0.002 | −1.9 | 4.2 | 5.5 | 1.90 | 97 | 5.0 | 13 | 0.00084 | 22.7 | 1.21 | ∞ | 0.0 |
nm_11 | 12h20 | 0.16 | 0.004 | −1.3 | 4.6 | 6.9 | 1.86 | 82 | 4.1 | 15 | 0.00103 | 22.9 | 1.00 | 9126 | 0.0 |
nm_12 | 12h30 | 0.20 | 0.010 | −2.7 | 4.5 | 4.4 | 1.51 | 60 | 3.8 | 17 | 0.00119 | 22.2 | 0.84 | 150 | 0.6 |
nm_13 | 12h40 | 0.17 | 0.008 | −1.8 | 4.1 | 6.8 | 1.63 | 86 | 3.7 | 18 | 0.00103 | 21.9 | 0.96 | 881 | 0.1 |
nm_14 | 12h50 | 0.24 | 0.021 | −6.1 | 3.4 | 3.2 | 1.15 | 45 | 3.2 | 17 | 0.00145 | 27.8 | 0.87 | 172 | 0.5 |
nm_15 | 13h00 | 0.23 | 0.006 | −4.1 | 3.4 | 3.0 | 1.32 | 58 | 3.5 | 13 | 0.00112 | 25.9 | 1.04 | ∞ | 0.0 |
nm_16 | 13h10 | 0.16 | 0.002 | −1.7 | 4.8 | 5.1 | 1.63 | 73 | 3.7 | 14 | 0.00120 | 22.5 | 0.84 | 206 | 0.5 |
nm_17 | 13h20 | 0.22 | 0.011 | −3.6 | 4.1 | 4.1 | 1.48 | 94 | 4.0 | 16 | 0.00096 | 19.5 | 0.92 | 274 | 0.3 |
nm_18 | 13h30 | 0.26 | 0.015 | −7.1 | 3.8 | 3.5 | 1.16 | 65 | 3.2 | 15 | 0.00124 | 23.4 | 0.85 | 147 | 0.6 |
Interval | Time Start (GMT + 1) | (m s−1) | (m) | (m) | (-) | (-) | (-) | (°) | (-) | Rb (s m−1) | (s m−1) | (µg m−3) | (-) | (s m−1) | (cm s−1) |
near/top, fetch: 15 m, height: 3.0 m above ground level, path length (one way): 37 m | |||||||||||||||
nt_1 | 10h40 | 0.17 | 0.004 | −2.8 | 4.2 | 5.1 | 1.70 | 68 | 4.7 | 15 | 0.00033 | 4.9 | 0.66 | 30 | 2.2 |
nt_2 | 10h50 | 0.20 | 0.003 | −4.9 | 3.9 | 3.3 | 1.42 | 67 | 4.0 | 13 | 0.00021 | 3.4 | 0.73 | 35 | 2.1 |
nt_3 | 11h00 | 0.20 | 0.007 | −4.5 | 3.9 | 4.9 | 1.50 | 76 | 4.3 | 15 | 0.00026 | 5.2 | 0.88 | 149 | 0.6 |
nt_4 | 11h10 | 0.22 | 0.013 | −4.2 | 3.7 | 4.4 | 1.34 | 60 | 3.6 | 16 | 0.00038 | 6.4 | 0.75 | 63 | 1.3 |
nt_5 | 11h20 | 0.25 | 0.016 | −5.7 | 4.0 | 4.4 | 1.31 | 67 | 3.7 | 16 | 0.00031 | 7.7 | 1.10 | ∞ | 0.0 |
nt_6 | 11h30 | 0.23 | 0.024 | −4.9 | 4.6 | 4.9 | 1.19 | 76 | 3.2 | 18 | 0.00034 | 6.9 | 0.91 | 338 | 0.3 |
nt_7 | 11h40 | 0.19 | 0.005 | −2.7 | 4.3 | 3.9 | 1.60 | 73 | 4.2 | 15 | 0.00035 | 5.8 | 0.74 | 51 | 1.5 |
nt_8 | 11h50 | 0.18 | 0.017 | −5.0 | 3.9 | 3.4 | 1.52 | 74 | 4.5 | 20 | 0.00052 | 6.2 | 0.54 | 0 | 4.9 |
nt_9 | 12h00 | 0.22 | 0.018 | −6.2 | 3.1 | 4.0 | 1.25 | 103 | 3.5 | 18 | 0.00025 | 2.6 | 0.46 | 0 | 5.7 |
nt_10 | 12h10 | 0.17 | 0.002 | −1.9 | 4.2 | 5.5 | 1.90 | 97 | 5.0 | 13 | 0.00023 | 5.4 | 1.04 | ∞ | 0.0 |
nt_11 | 12h20 | 0.16 | 0.004 | −1.3 | 4.6 | 6.9 | 1.86 | 82 | 4.1 | 15 | 0.00034 | 7.0 | 0.93 | 555 | 0.2 |
nt_12 | 12h30 | 0.20 | 0.010 | −2.7 | 4.5 | 4.4 | 1.51 | 60 | 3.8 | 17 | 0.00041 | 8.4 | 0.91 | 275 | 0.3 |
nt_13 | 12h40 | 0.17 | 0.008 | −1.8 | 4.1 | 6.8 | 1.63 | 86 | 3.7 | 18 | 0.00033 | 7.7 | 1.06 | ∞ | 0.0 |
nt_14 | 12h50 | 0.24 | 0.021 | −6.1 | 3.4 | 3.2 | 1.15 | 45 | 3.2 | 17 | 0.00043 | 8.1 | 0.84 | 118 | 0.7 |
nt_15 | 13h00 | 0.23 | 0.006 | −4.1 | 3.4 | 3.0 | 1.32 | 58 | 3.5 | 13 | 0.00024 | 6.2 | 1.15 | ∞ | 0.0 |
nt_16 | 13h10 | 0.16 | 0.002 | −1.7 | 4.8 | 5.1 | 1.63 | 73 | 3.7 | 14 | 0.00035 | 6.8 | 0.88 | 283 | 0.3 |
nt_17 | 13h20 | 0.22 | 0.011 | −3.6 | 4.1 | 4.1 | 1.48 | 94 | 4.0 | 16 | 0.00031 | 5.0 | 0.72 | 35 | 2.0 |
nt_18 | 13h30 | 0.26 | 0.015 | −7.1 | 3.8 | 3.5 | 1.16 | 65 | 3.2 | 15 | 0.00029 | 4.6 | 0.70 | 32 | 2.1 |
Interval | Time Start (GMT + 1) | (m s−1) | (m) | (m) | (-) | (-) | (-) | (°) | (-) | Rb (s m−1) | (s m−1) | (µg m−3) | (-) | (s m−1) | (cm s−1) |
far, fetch: 70 m, height: 1.2 m above ground level, path length (one way): 33 m | |||||||||||||||
f_1 | 10h40 | 0.17 | 0.004 | −2.8 | 4.2 | 5.1 | 1.70 | 68 | 4.7 | 15 | 0.00020 | 2.8 | 0.64 | 56 | 1.4 |
f_2 | 10h50 | 0.20 | 0.003 | −4.9 | 3.9 | 3.3 | 1.42 | 67 | 4.0 | 13 | 0.00033 | 3.7 | 0.51 | 17 | 3.3 |
f_3 | 11h00 | 0.20 | 0.007 | −4.5 | 3.9 | 4.9 | 1.50 | 76 | 4.3 | 15 | 0.00018 | 3.7 | 0.93 | 548 | 0.2 |
f_4 | 11h10 | 0.22 | 0.013 | −4.2 | 3.7 | 4.4 | 1.34 | 60 | 3.6 | 16 | 0.00021 | 2.5 | 0.54 | 31 | 2.1 |
f_5 | 11h20 | 0.25 | 0.016 | −5.7 | 4.0 | 4.4 | 1.31 | 67 | 3.7 | 16 | 0.00019 | 3.3 | 0.77 | 121 | 0.7 |
f_6 | 11h30 | 0.23 | 0.024 | −4.9 | 4.6 | 4.9 | 1.19 | 76 | 3.2 | 18 | 0.00015 | 2.3 | 0.72 | 109 | 0.8 |
f_7 | 11h40 | 0.19 | 0.005 | −2.7 | 4.3 | 3.9 | 1.60 | 73 | 4.2 | 15 | 0.00017 | 2.1 | 0.56 | 26 | 2.5 |
f_8 | 11h50 | 0.18 | 0.017 | −5.0 | 3.9 | 3.4 | 1.52 | 74 | 4.5 | 20 | 0.00020 | 2.5 | 0.57 | 22 | 2.4 |
f_9 | 12h00 | 0.22 | 0.018 | −6.2 | 3.1 | 4.0 | 1.25 | 103 | 3.5 | 18 | 0.00003 | 0.6 | 0.94 | 314 | 0.3 |
f_10 1 | 12h10 | 0.17 | 0.002 | −1.9 | 4.2 | 5.5 | 1.90 | 97 | 5.0 | 13 | 0.00003 | 2.6 | 4.37 1 | ∞ 1 | 0.0 1 |
f_11 | 12h20 | 0.16 | 0.004 | −1.3 | 4.6 | 6.9 | 1.86 | 82 | 4.1 | 15 | 0.00009 | 2.1 | 1.05 | ∞ | 0.0 |
f_12 | 12h30 | 0.20 | 0.010 | −2.7 | 4.5 | 4.4 | 1.51 | 60 | 3.8 | 17 | 0.00019 | 2.8 | 0.67 | 78 | 1.1 |
f_13 | 12h40 | 0.17 | 0.008 | −1.8 | 4.1 | 6.8 | 1.63 | 86 | 3.7 | 18 | 0.00009 | 1.8 | 0.87 | 318 | 0.3 |
f_14 | 12h50 | 0.24 | 0.021 | −6.1 | 3.4 | 3.2 | 1.15 | 45 | 3.2 | 17 | 0.00023 | 2.2 | 0.44 | 6 | 4.3 |
f_15 | 13h00 | 0.23 | 0.006 | −4.1 | 3.4 | 3.0 | 1.32 | 58 | 3.5 | 13 | 0.00039 | 3.4 | 0.39 | 0 | 7.2 |
f_16 | 13h10 | 0.16 | 0.002 | −1.7 | 4.8 | 5.1 | 1.63 | 73 | 3.7 | 14 | 0.00017 | 2.7 | 0.71 | 114 | 0.8 |
f_17 | 13h20 | 0.22 | 0.011 | −3.6 | 4.1 | 4.1 | 1.48 | 94 | 4.0 | 16 | 0.00004 | 0.9 | 0.93 | 380 | 0.3 |
f_18 | 13h30 | 0.26 | 0.015 | −7.1 | 3.8 | 3.5 | 1.16 | 65 | 3.2 | 15 | 0.00029 | 3.5 | 0.54 | 30 | 2.2 |
References
- Coates, T.W.; Flesch, T.K.; McGinn, S.M.; Charmley, E.; Chen, D. Evaluating an eddy covariance technique to estimate point-source emissions and its potential application to grazing cattle. Agric. For. Meteorol. 2017, 234–235, 164–171. [Google Scholar] [CrossRef]
- Felber, R.; Münger, A.; Neftel, A.; Ammann, C. Eddy covariance methane flux measurements over a grazed pasture: Effect of cows as moving point sources. Biogeosciences 2015, 12, 3419–3468. [Google Scholar] [CrossRef]
- Laubach, J.; Kelliher, F.M.; Knight, T.W.; Clark, H.; Molano, G.; Cavanagh, A. Methane emissions from beef cattle—A comparison of paddock- and animal-scale measurements. Aust. J. Exp. Agric. 2008, 48, 132–137. [Google Scholar] [CrossRef]
- Laubach, J.; Taghizadeh-Toosi, A.; Sherlock, R.R.; Kelliher, F.M. Measuring and modelling ammonia emissions from a regular pattern of cattle urine patches. Agric. For. Meteorol. 2012, 156, 1–17. [Google Scholar] [CrossRef]
- Loubet, B.; Génermont, S.; Ferrara, R.M.; Bedos, C.; Decuq, C.; Personne, E.; Fanucci, O.; Durand, B.; Rana, G.; Cellier, P. An inverse model to estimate ammonia emissions from fields. Eur. J. Soil Sci. 2010, 61, 793–805. [Google Scholar] [CrossRef]
- Sintermann, J.; Ammann, C.; Kuhn, U.; Spirig, C.; Hirschberger, R.; Gartner, A.; Neftel, A. Determination of field scale ammonia emissions for common slurry spreading practice with two independent methods. Atmos. Meas. Tech. 2011, 4, 1821–1840. [Google Scholar] [CrossRef]
- Wilson, J.D.; Flesch, T.K.; Crenna, B.P. Estimating Surface-Air Gas Fluxes by Inverse Dispersion Using a Backward Lagrangian Stochastic Trajectory Model. In Lagrangian Modeling of the Atmosphere; Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., Webley, P., Eds.; American Geophysical Union: Washington, DC, USA, 2012; pp. 149–162. [Google Scholar]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P.; Sharpe, R.R. Deducing ground-to-air emissions from observed trace gas concentrations: A field trial. J. Appl. Meteorol. 2004, 43, 487–502. [Google Scholar] [CrossRef]
- Carozzi, M.; Loubet, B.; Acutis, M.; Rana, G.; Ferrara, R.M. Inverse dispersion modelling highlights the efficiency of slurry injection to reduce ammonia losses by agriculture in the Po Valley (Italy). Agric. For. Meteorol. 2013, 171, 306–318. [Google Scholar] [CrossRef]
- Flesch, T.K.; Harper, L.A.; Powell, J.M.; Wilson, J.D. Inverse-dispersion calculation of ammonia emissions from Wisconsin dairy farms. Trans. ASABE 2009, 52, 253–265. [Google Scholar] [CrossRef]
- Grant, R.H.; Boehm, M.T.; Bogan, B.W. Methane and carbon dioxide emissions from manure storage facilities at two free-stall dairies. Agric. For. Meteorol. 2015, 213, 102–113. [Google Scholar] [CrossRef]
- Harper, L.A.; Flesch, T.K.; Weaver, K.H.; Wilson, J.D. The effect of biofuel production on swine farm methane and ammonia emissions. J. Environ. Qual. 2010, 39, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- McGinn, S.M.; Flesch, T.K.; Crenna, B.P.; Beauchemin, K.A.; Coates, T. Quantifying ammonia emissions from a cattle feedlot using a dispersion model. J. Environ. Qual. 2007, 36, 1585–1590. [Google Scholar] [CrossRef] [PubMed]
- Flechard, C.R. Turbulent Exchange of Ammonia above Vegetation (BL). Ph.D. Thesis, University of Nottingham, Nottingham, UK, 1998. [Google Scholar]
- Schrader, F.; Brümmer, C. Land use specific ammonia deposition velocities: A review of recent studies (2004–2013). Water Air Soil Pollut. 2014, 225, 2114. [Google Scholar] [CrossRef] [PubMed]
- Asman, W.A.H.; Sutton, M.A.; Schjørring, J.K. Ammonia: Emission, atmospheric transport and deposition. New Phytol. 1998, 139, 27–48. [Google Scholar] [CrossRef]
- Loubet, B.; Asman, W.A.H.; Theobald, M.R.; Hertel, O.; Tang, Y.S.; Robin, P.; Hassouna, M.; Dämmgen, U.; Genermont, S.; Cellier, P.; et al. Ammonia Deposition Near Hot Spots: Processes, Models and Monitoring Methods. In Atmospheric Ammonia; Sutton, M.A., Reis, S., Baker, S.M.H., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 205–267. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Flesch, T.K.; Wilson, J.D.; Yee, E. Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous Emissions. J. Appl. Meteorol. 1995, 34, 1320–1332. [Google Scholar] [CrossRef]
- Wilson, J.D.; Ferrandino, F.J.; Thurtell, G.W. A relationship between deposition velocity and trajectory reflection probability for use in stochastic Lagrangian dispersion models. Agric. For. Meteorol. 1989, 47, 139–154. [Google Scholar] [CrossRef]
- Knaus, J. snowfall: Easier Cluster Computing (Based on snow). R Package Version 1.84-6.1. Available online: https://CRAN.R-project.org/package=snowfall (accessed on 1 January 2017).
- Luke, T.; Rossini, A.J.; Li, N.; Sevcikova, H. snow: Simple Network of Workstations. R Package Version 0.4-2. Available online: https://CRAN.R-project.org/package=snow (accessed on 1 January 2017).
- Eddelbuettel, D.; François, R. Rcpp: Seamless R and C++ Integration. J. Stat. Softw. 2011, 40, 1–18. [Google Scholar] [CrossRef]
- Dowle, M.; Srinivasan, A. data.table: Extension of ‘data.frame’. R Package Version 1.10.4. Available online: https://CRAN.R-project.org/package=data.table (accessed on 1 January 2018).
- Sintermann, J.; Dietrich, K.; Häni, C.; Bell, M.; Jocher, M.; Neftel, A. A miniDOAS instrument optimised for ammonia field measurements. Atmos. Meas. Tech. 2016, 9, 2721–2734. [Google Scholar] [CrossRef]
- Sutton, M.A.; Schjorring, J.K.; Wyers, G.P.; Duyzer, J.H.; Ineson, P.; Powlson, D.S. Plant-atmosphere exchange of ammonia [and discussion]. Philos. Trans. R. Soc. A 1995, 351, 261–278. [Google Scholar] [CrossRef]
- Garland, J.A. The dry deposition of sulphur dioxide to land and water surfaces. Proc. R. Soc. A 1977, 354, 245–268. [Google Scholar] [CrossRef]
- Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems, 3rd ed.; 6th printing; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Tang, M.J.; Cox, R.A.; Kalberer, M. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 1. Inorganic compounds. Atmos. Chem. Phys. 2014, 14, 9233–9247. [Google Scholar] [CrossRef]
- Flechard, C.R.; Massad, R.S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J.O.; Cooter, E.J.; Nemitz, E.; Sutton, M.A. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange. Biogeosciences 2013, 10, 5183–5225. [Google Scholar] [CrossRef]
- Flechard, C.R.; Spirig, C.; Neftel, A.; Ammann, C. The annual ammonia budget of fertilised cut grassland—Part 2: Seasonal variations and compensation point modeling. Biogeosciences 2010, 7, 537–556. [Google Scholar] [CrossRef]
- Massad, R.S.; Nemitz, E.; Sutton, M.A. Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere. Atmos. Chem. Phys. 2010, 10, 10359–10386. [Google Scholar] [CrossRef]
- Sutton, M.A.; Burkhardt, J.K.; Guerin, D.; Nemitz, E.; Fowler, D. Development of resistance models to describe measurements of bi-directional ammonia surface-atmosphere exchange. Atmos. Environ. 1998, 32, 473–480. [Google Scholar] [CrossRef]
- Bell, M.; Flechard, C.; Fauvel, Y.; Häni, C.; Sintermann, J.; Jocher, M.; Menzi, H.; Hensen, A.; Neftel, A. Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling. Atmos. Meas. Tech. 2017, 10, 1875–1892. [Google Scholar] [CrossRef]
- Loubet, B.; Cellier, P.; Milford, C.; Sutton, M.A. A coupled dispersion and exchange model for short-range dry deposition of atmospheric ammonia. Q. J. R. Meteorol. Soc. 2006, 132, 1733–1763. [Google Scholar] [CrossRef]
- Giltrap, D.; Saggar, S.; Rodriguez, J.; Bishop, P. Modelling NH3 volatilisation within a urine patch using NZ-DNDC. Nutr. Cycl. Agroecosyst. 2017, 108, 267–277. [Google Scholar] [CrossRef]
- Móring, A.; Vieno, M.; Doherty, R.M.; Milford, C.; Nemitz, E.; Twigg, M.M.; Horváth, L.; Sutton, M.A. Process-based modelling of NH3 exchange with grazed grasslands. Biogeosciences 2017, 14, 4161–4193. [Google Scholar] [CrossRef]
- Flechard, C.R.; Nemitz, E.; Smith, R.I.; Fowler, D.; Vermeulen, A.T.; Bleeker, A.; Erisman, J.W.; Simpson, D.; Zhang, L.; Tang, Y.S.; et al. Dry deposition of reactive nitrogen to European ecosystems: A comparison of inferential models across the NitroEurope network. Atmos. Chem. Phys. 2011, 11, 2703–2728. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Häni, C.; Flechard, C.; Neftel, A.; Sintermann, J.; Kupper, T. Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions. Atmosphere 2018, 9, 146. https://doi.org/10.3390/atmos9040146
Häni C, Flechard C, Neftel A, Sintermann J, Kupper T. Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions. Atmosphere. 2018; 9(4):146. https://doi.org/10.3390/atmos9040146
Chicago/Turabian StyleHäni, Christoph, Christophe Flechard, Albrecht Neftel, Jörg Sintermann, and Thomas Kupper. 2018. "Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions" Atmosphere 9, no. 4: 146. https://doi.org/10.3390/atmos9040146
APA StyleHäni, C., Flechard, C., Neftel, A., Sintermann, J., & Kupper, T. (2018). Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions. Atmosphere, 9(4), 146. https://doi.org/10.3390/atmos9040146