Cloud-Precipitation Parameters and Radiative Forcing of Warm Precipitating Cloud over the Tropical Pacific Ocean Based on TRMM Datasets and Radiative Transfer Model
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Geographic Distributions and Probability Density Distributions of Warm Precipitating Cloud (WPC)
3.2. Relationships between WPC Types and Their Cloud Parameters
3.3. Radiative Forcing of WPC
4. Discussion and Conclusions
- (1)
- Total WPC mainly occurs in the North-west Pacific, ITCZ and SPCZ, accompanied by relatively warm SSTs, accounting for approximately 22% of the total. The total WPC has a Re of 15.6 μm, Tau of 20, and LWP of 200 g m−2 on average. In total WPC, EL-WPC occurs more in the west Pacific warm pool with higher instability and warmer SST, which includes cumulus congestus. The EH-WPC, meanwhile, is distributed more in the SPCZ with deep convection.
- (2)
- The EH-WPC has higher Tau (~28) and LWP (250 g m−2) with a smaller mean Re (15.2 μm) compared with EL-WPC. Most of the EH-WPCs occur at 3.5 km H with 280 K BT4, while the EH-WPCs are at 2.5 km with 285 K. In EL-WPC, due to lighter rain rate, smaller Re is distributed with decreased H for EL-WPC. While for the EH-WPC, higher ETH is characterized by stronger convective motion, the cloud collision-coalescence process makes the Re larger in the lower H and generates a stronger rain rate. When the WPC has a light rain rate, the Re is larger with the increased RR, while it decreases when in a heavy rain rate. The relationships between RR and cloud parameters are established by fitting statistics, which helps to deepen the connections between precipitation and cloud for WPC.
- (3)
- The TCRF is a cooling of about −0.4 W m−2 for EL-WPC, and −0.8 W m−2 for the EH-WPC. The EH-WPC induces stronger cooling net radiative effects (−0.4 W m−2) than the EL-WPC. Most of the WPC is regarded as the thick cloud, which could seem to be the black body. The cloud fraction, temperature and Tau would then be more important for radiative forcing than other microphysical properties and results in the distribution of radiative forcing being mostly controlled by the fraction.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petty, G.W. Prevalence of precipitation from warm-topped clouds over eastern Asia and the western Pacific. J. Clim. 1999, 12, 220–229. [Google Scholar] [CrossRef]
- Short, D.A.; Nakamura, K. TRMM radar observations of shallow precipitation over the tropical oceans. J. Clim. 2000, 13, 4107–4124. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A., Jr. The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteorol. 2003, 42, 1519–1524. [Google Scholar] [CrossRef]
- Lau, K.M.; Wu, H.T. Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett. 2003, 30, 2290. [Google Scholar] [CrossRef]
- Qin, F.; Fu, Y. TRMM-observed summer warm rain over the tropical and subtropical Pacific Ocean: Characteristics and regional differences. J. Meteorol. Res. 2016, 30, 371–385. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Short, D.A. On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci. 1980, 37, 1233–1250. [Google Scholar] [CrossRef]
- Slingo, A. Sensitivity of the Earth's radiation budget to changes in low clouds. Nature 1990, 343, 49–51. [Google Scholar] [CrossRef]
- Webb, M.J.; Senior, C.A.; Sexton, D.M.H.; Ingram, W.J.; Williams, K.D.; Ringer, M.A.; Knutson, T. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim. Dyn. 2006, 27, 17–38. [Google Scholar] [CrossRef]
- De Szoeke, S.P.; Fairall, C.W.; Pezoa, S. Ship observations of the tropical Pacific Ocean along the coast of South America. J. Clim. 2009, 22, 458–464. [Google Scholar] [CrossRef]
- Bony, S.; Dufresne, J.L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Medeiros, B.; Stevens, B.; Held, I.M.; Zhao, M.; Williamson, D.L.; Olson, J.G.; Bretherton, C.S. Aquaplanets, climate sensitivity, and low clouds. J. Clim. 2008, 21, 4974–4991. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Midgley, P.M. IPCC 2013, Climate Change; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Klein, S.A.; Hartmann, D.L. The seasonal cycle of low stratiform clouds. J. Clim. 1993, 6, 1587–1606. [Google Scholar] [CrossRef]
- Stephens, G.L.; Haynes, J.M. Near global observations of the warm rain coalescence process. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Liu, G.; Curry, J.A.; Sheu, R.S. Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data. J. Geophys. Res. Atmos. 1995, 100, 13811–13826. [Google Scholar] [CrossRef]
- Lin, B.; Rossow, W.B. Precipitation water path and rainfall rate estimates over oceans using special sensor microwave imager and International Satellite Cloud Climatology Project data. J. Geophys. Res. Atmos. 1997, 102, 9359–9374. [Google Scholar] [CrossRef]
- Tokay, A.; Short, D.A.; Williams, C.R.; Ecklund, W.L.; Gage, K.S. Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteorol. 1999, 38, 302–320. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J. “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Clim. 2009, 22, 767–779. [Google Scholar] [CrossRef]
- Rapp, A.D.; Lebsock, M.; L’Ecuyer, T. Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat. Environ. Res. Lett. 2013, 8, 014027. [Google Scholar] [CrossRef]
- Wood, R. Relationships between optical depth, liquid water path, droplet concentration, and effective radius in adiabatic layer cloud. Univ. Wash. 2006, 3, 4641–4654. [Google Scholar]
- Hansen, J.E.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev. 1974, 16, 527–610. [Google Scholar] [CrossRef]
- Petty, G.W. A First Course in Atmospheric Radiation, 2nd ed.; Sundog Pub: Madison, WI, USA, 2006; p. 459. [Google Scholar]
- Krueger, S.K.; Fu, Q.; Liou, K.N.; Chin, H.N.S. Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteorol. 1995, 34, 281–287. [Google Scholar] [CrossRef]
- Leach, M.J.; Raman, S. Role of radiative transfer in maintenance and destruction of stratocumulus clouds. Atmos. Environ. 1995, 29, 2009–2018. [Google Scholar] [CrossRef]
- Rogers, R.R.; Yau, M.K. A Short Course in Cloud Physics, 3rd ed.; Butterworth-Heinemann, International Series in Natural Philosophy: Woburn, MA, USA, 1989; p. 290. [Google Scholar]
- Dong, X.; Xi, B.; Wu, P. Investigation of the diurnal variation of marine boundary layer cloud microphysical properties at the Azores. J. Clim. 2014, 27, 8827–8835. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. ISCCP cloud data products. Bull. Am. Meteorol. Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Clim. 1993, 6, 2341–2369. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef]
- Lin, B.; Rossow, W.B. Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods. J. Geophys. Res. Atmos. 1994, 99, 20907–20927. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Pavolonis, M.J. Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteorol. Climatol. 2009, 48, 1100–1116. [Google Scholar] [CrossRef]
- Wylie, D.; Jackson, D.L.; Menzel, W.P.; Bates, J.J. Trends in global cloud cover in two decades of HIRS observations. J. Clim. 2005, 18, 3021–3031. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; L’Ecuyer, T. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A., Jr.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Kubar, T.L. The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakajima, T.Y.; Stephens, G.L. Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci. 2010, 67, 3019–3032. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Q.; Qi, L.; Fu, Y. Oceanic single-layer warm clouds missed by the Cloud Profiling Radar as inferred from MODIS and CALIOP measurements. J. Geophys. Res. Atmos. 2016, 121, 12947–12965. [Google Scholar] [CrossRef]
- Suzuki, K.; Stephens, G.L. Global identification of warm cloud microphysical processes with combined use of A-Train observations. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Kubar, T.L.; Hartmann, D.L.; Wood, R. Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J. Atmos. Sci. 2009, 66, 2953–2972. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, G.; Wu, G.; Yu, R.; Xu, Y.; Wang, Y.; Liu, Q. Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Yu, R.; Li, J.; Chen, H. Diurnal variation of surface wind over central eastern China. Clim. Dyn. 2009, 33, 1089. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y. Comparison of radiative signals between precipitating and non-precipitating clouds in frontal and typhoon domains over East Asia. Atmos. Res. 2010, 96, 436–446. [Google Scholar] [CrossRef]
- Simpson, J.; Adler, R.F.; North, G.R. A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Am. Meteorol. Soc. 1988, 69, 278–295. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, G. The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data. J. Appl. Meteorol. 2001, 40, 2130–2143. [Google Scholar] [CrossRef]
- Liu, G.; Fu, Y. The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J. Meteorol. Soc. Jpn. Ser. II 2001, 79, 131–143. [Google Scholar] [CrossRef]
- Fu, Y.F.; Liu, P.; Liu, Q.; Ma, M.; Sun, L.; Wang, Y. Climatological characteristics of VIRS channels for precipitating cloud in summer over the tropics and subtropics. J. Atmos. Environ. Opt. 2011, 6, 129–140. [Google Scholar]
- Yang, Y.J.; Lu, D.R.; Fu, Y.F.; Chen, F.J.; Wang, Y. Spectral characteristics of tropical anvils obtained by combining TRMM precipitation radar with visible and infrared scanner data. Pure Appl. Geophys. 2015, 172, 1717–1733. [Google Scholar] [CrossRef]
- Awaka, J. Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. In Proceedings of the URSI-F Open Symposium on Wave Propagation and Remote Sensing, Aveiro, Portugal, 22–25 September 1998; pp. 143–146. [Google Scholar]
- Iguchi, T.; Kozu, T.; Kwiatkowski, J.; Meneghini, R.; Awaka, J.; Okamoto, K.I. Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 1–30. [Google Scholar] [CrossRef]
- Fu, Y.; Cao, A.; Li, T.; Feng, S.; Zheng, Y.; Liu, Y.; Zhang, A. Climatic characteristics of the storm top altitude for the convective and stratiform precipitation in summer Asia based on measurements of the TRMM precipitation radar. Acta Meteor Sin. 2012, 70, 436–451. [Google Scholar]
- Chen, F.; Fu, Y.; Liu, P.; Yang, Y. Seasonal variability of storm top altitudes in the tropics and subtropics observed by TRMM PR. Atmos. Res. 2016, 169, 113–126. [Google Scholar] [CrossRef]
- Chen, R.; Li, Z.; Kuligowski, R.J.; Ferraro, R.; Weng, F. A study of warm rain detection using A-Train satellite data. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.; Yu, R.; Sun, L.; Lu, N. A new satellite-based census of precipitating and nonprecipitating clouds over the tropics and subtropics. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Q.; Fu, Y.; Li, R. Daytime precipitation identification scheme based on multiple cloud parameters retrieved from visible and infrared measurements. Sci. China Earth Sci. 2014, 57, 2112–2124. [Google Scholar] [CrossRef]
- Fu, Y. Cloud parameters retrieved by the bispectral reflectance algorithm and associated applications. J. Meteorol. Res. 2014, 28, 965–982. [Google Scholar] [CrossRef]
- Chen, F.; Sheng, S.; Bao, Z.; Wen, H.; Hua, L.; Paul, N.J.; Fu, Y. Precipitation Clouds Delineation Scheme in Tropical Cyclones and Its Validation Using Precipitation and Cloud Parameter Datasets from TRMM. J. Appl. Meteorol. Climatol. 2018, 57, 821–836. [Google Scholar] [CrossRef]
- Twomey, S.; Seton, K.J. Inferences of gross microphysical properties of clouds from spectral reflectance measurements. J. Atmos. Sci. 1980, 37, 1065–1069. [Google Scholar] [CrossRef]
- Nakajima, T.Y.; Nakajma, T. Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci. 1995, 52, 4043–4059. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N.; Cribb, M.C.; Charlock, T.P.; Grossman, A. Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci. 1997, 54, 2799–2812. [Google Scholar] [CrossRef]
- Hansen, J.E.; Hovenier, J.W. The doubling method applied to multiple scattering of polarized light. J. Quant. Spectrosc. Radiat. Transf. 1971, 11, 809–812. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.P.; Berk, A.; Chetwynd, J.H.; Harder, J.; Fontenla, J.M.; Shettle, E.P.; Gardner, J.A. Using the MODTRAN5 radiative transfer algorithm with NASA satellite data: AIRS and SORCE. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6565, p. 65651. [Google Scholar]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, A.; Liu, Y. Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM precipitation radar. Acta Meteorol. Sin. 2008, 66, 730–746. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Zhu, Y. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Gao, W.; Sui, C.H.; Hu, Z. A study of macrophysical and microphysical properties of warm clouds over the Northern Hemisphere using CloudSat/CALIPSO data. J. Geophys. Res. Atmos. 2014, 119, 3268–3280. [Google Scholar] [CrossRef]
- Weller, R.A.; Anderson, S.P. Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean-Atmosphere Response Experiment. J. Clim. 1996, 9, 1959–1990. [Google Scholar] [CrossRef]
- Chen, S.S.; Houze, R.A. Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Q. J. R. Meteorol. Soc. 1997, 123, 357–388. [Google Scholar] [CrossRef]
- Vincent, D.G. The South Pacific convergence zone (SPCZ): A review. Mon. Weather Rev. 1994, 122, 1949–1970. [Google Scholar] [CrossRef]
- Nakajima, T.; King, M.D. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci. 1990, 47, 1878–1893. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Menzel, W.P.; Tanre, D. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens. 1992, 30, 2–27. [Google Scholar] [CrossRef]
- Platnick, S.; Twomey, S. Determining the susceptibility of cloud albedo to changes in droplet concentration with the Advanced Very High Resolution Radiometer. J. Appl. Meteorol. 1994, 33, 334–347. [Google Scholar] [CrossRef]
- Fu, Y.; Pan, X.; Yang, Y.; Chen, F.; Liu, P. Climatological characteristics of summer precipitation over East Asia measured by TRMM PR: A review. J. Meteorol. Res. 2017, 31, 142–159. [Google Scholar] [CrossRef]
- Harris, G.N., Jr.; Bowman, K.P.; Shin, D.B. Comparison of freezing-level altitudes from the NCEP reanalysis with TRMM precipitation radar brightband data. J. Clim. 2000, 13, 4137–4148. [Google Scholar] [CrossRef]
- Zhang, Z.; Werner, F.; Cho, H.M.; Wind, G.; Platnick, S.; Ackerman, A.S.; Meyer, K. A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method. J. Geophys. Res. Atmos. 2016, 121, 7007–7025. [Google Scholar] [CrossRef]
Coefficient | a1 | b1 | Re0 | RR0 |
0.393 | 0.981 | 15.488 | 2.660 | |
Coefficient | a2 | b2 | c2 | d2 |
18.934 | 0.257 | 51.815 | 26.597 | |
Coefficient | a3 | b3 | c3 | d3 |
195.745 | 0.252 | 345.807 | 21.833 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, F.; Xian, T.; Fu, Y. Cloud-Precipitation Parameters and Radiative Forcing of Warm Precipitating Cloud over the Tropical Pacific Ocean Based on TRMM Datasets and Radiative Transfer Model. Atmosphere 2018, 9, 206. https://doi.org/10.3390/atmos9060206
Qin F, Xian T, Fu Y. Cloud-Precipitation Parameters and Radiative Forcing of Warm Precipitating Cloud over the Tropical Pacific Ocean Based on TRMM Datasets and Radiative Transfer Model. Atmosphere. 2018; 9(6):206. https://doi.org/10.3390/atmos9060206
Chicago/Turabian StyleQin, Fang, Tao Xian, and Yunfei Fu. 2018. "Cloud-Precipitation Parameters and Radiative Forcing of Warm Precipitating Cloud over the Tropical Pacific Ocean Based on TRMM Datasets and Radiative Transfer Model" Atmosphere 9, no. 6: 206. https://doi.org/10.3390/atmos9060206
APA StyleQin, F., Xian, T., & Fu, Y. (2018). Cloud-Precipitation Parameters and Radiative Forcing of Warm Precipitating Cloud over the Tropical Pacific Ocean Based on TRMM Datasets and Radiative Transfer Model. Atmosphere, 9(6), 206. https://doi.org/10.3390/atmos9060206