Application of Farmyard Manure Rather Than Manure Slurry Mitigates the Net Greenhouse Gas Emissions from Herbage Production System in Nasu, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Boundary and Functional Units
2.2. NECB and Emissions of CH4 and N2O from Grassland
2.3. GHG Emissions Related to Cattle Waste Management
2.4. GHG Emissions Related to Synthetic Fertilizer Manufacture
2.5. GHG Emissions Related to Grassland Management
2.6. Overall Net GHG Emissions and GHGI of Herbage Production
3. Results and Discussion
3.1. NECB and Emissions of N2O and CH4 from Grassland
3.2. GHG Emissions Related to Cattle Waste Management
3.3. GHG Emissions Related to Fertilizer Manufacture
3.4. GHG Emissions Related to Grassland Management
3.5. Overall Net GHG Emissions and GHGI
3.6. Adjustment of Farming Practices
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Greenhouse Gas Inventory Office of Japan (GIO). National Greenhouse Gas Inventory Report of Japan; Center for Global Environmental Research, National Institute for Environmental Studies: Tsukuba, Japan, 2017. [Google Scholar]
- Maeda, K.; Hanajima, D.; Morioka, R.; Toyoda, S.; Yoshida, N.; Osada, T. Mitigation of greenhouse gas emission from the cattle manure composting process by use of a bulking agent. Soil Sci. Plant Nutr. 2013, 59, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Mori, A. Greenhouse gas sink-source functions of grassland ecosystems. Jpn. Agric. Res. Q. 2016, 50, 187–190. [Google Scholar] [CrossRef]
- Mori, A.; Hojito, M. Effect of dairy manure type on the carbon balance of mowed grassland in Nasu, Japan: Comparison between manure slurry plus synthetic fertilizer plots and farmyard manure plus synthetic fertilizer plots. Soil Sci. Plant Nutr. 2015, 61, 736–746. [Google Scholar] [CrossRef]
- Mori, A.; Hojito, M. Effect of dairy manure type and supplemental synthetic fertilizer on methane and nitrous oxide emissions from a grassland in Nasu, Japan. Soil Sci. Plant Nutr. 2015, 61, 347–358. [Google Scholar] [CrossRef]
- Shimizu, M.; Marutani, S.; Desyatkin, A.R.; Jin, T.; Nakano, K.; Hata, H.; Hatano, R. Nitrous oxide emissions and nitrogen cycling in managed grassland in Southern Hokkaido, Japan. Soil Sci. Plant Nutr. 2010, 56, 676–688. [Google Scholar] [CrossRef] [Green Version]
- Sawamoto, T.; Nakamura, M.; Nekomoto, K.; Hoshiba, S.; Minato, K.; Nakayama, M.; Osada, T. The cumulative methane production from dairy cattle slurry can be explained by its volatile solid, temperature and length of storage. Anim. Sci. J. 2016, 87, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, Y.; Suzuki, K.; Waki, M.; Yasuda, T. Mitigation option of greenhouse gas emissions from livestock manure composting. Jpn. Agric. Res. Q. 2015, 49, 307–312. [Google Scholar] [CrossRef]
- Zhang, H.; Matsuto, T. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste. Waste Manag. 2011, 31, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Pimentel, D. Handbook of Energy Utilization in Agriculture; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar]
- Bhogal, A.; Nicholson, F.A.; Rollett, A.; Taylor, M.; Litterick, A.; Whittingham, M.J.; Williams, J.R. Improvements in the quality of agricultural soils following organic material additions depend on both the quantity and quality of the materials applied. Front. Sustain. Food Syst. 2018, 2, 9. [Google Scholar] [CrossRef]
- Ito, N. Open type compost fermentation instrument. In The Report of Cost Research of Machines and Equipment for Livestock Waste Treatments 2002 (Undertake Research Project Commissioned by Livestock Industry’s Environmental Improvement Organization); Japan Livestock Production Facilities and Machineries Association: Tokyo, Japan, 2002; pp. 46–73. (In Japanese) [Google Scholar]
- National Institute for Agro-Environmental Sciences (NIAES). Manual for Life Cycle Assessment of Agricultural Practice in Japan; National Institute for Agro-Environmental Sciences: Tsukuba, Japan, 2003; pp. 1–51. (In Japanese) [Google Scholar]
- Sasaki, Y. Forage Crops, Specific Energy Consumption for Production Systems of Major Crops; Agriculture, Forestry and Fisheries Technical Information Society: Tokyo, Japan, 1996; pp. 361–383. (In Japanese) [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Shimizu, M.; Marutani, S.; Desyatkin, A.R.; Jin, T.; Hata, H.; Hatano, R. The effect of manure application on carbon dynamics and budgets in a managed grassland of Southern Hokkaido, Japan. Agric. Ecosyst. Environ. 2009, 130, 31–40. [Google Scholar] [CrossRef]
- Handbook of Animal Waste Management and Utilization in Hokkaido 2004; Ohara, M.; Takeda, Y.; Omura, K. (Eds.) Hokkaido Prefectural Experiment Stations and Hokkaido Animal Research Center: Sapporo, Japan, 2004. (In Japanese) [Google Scholar]
- Shiga, H.; Ohyama, N.; Maeda, K.; Suzuki, M. An evaluation of different organic materials based on their decomposition pattern in paddy soils. Res. Bull. Natl. Agric. Res. Cetr. 1985, 5, 1–19, (In Japanese with English Summary). [Google Scholar]
- Hirata, R.; Miyata, A.; Mano, M.; Shimizu, M.; Arita, T.; Kouda, Y.; Matsuura, S.; Niimi, M.; Mori, A.; Saigusa, T.; et al. Carbon dioxide exchange at four intensively managed grassland sites across different climate zones of Japan and the influence of manure application on ecosystem carbon and greenhouse gas budgets. Agric. For. Meteorol. 2013, 177, 57–68. [Google Scholar] [CrossRef]
- Shimizu, M.; Hatano, R.; Arita, T.; Kouda, Y.; Mori, A.; Matsuura, S.; Niimi, M.; Jin, T.; Desyatkin, A.R.; Kawamura, O.; et al. The effect of fertilizer and manure application on CH4 and N2O emissions from managed grasslands in Japan. Soil Sci. Plant Nutr. 2013, 59, 69–86. [Google Scholar] [CrossRef]
- Grassland Agriculture and Forage Seed Association (GAFSA). Agricultural activity and global warming. In Greenhouse Gas Mitigation by Self-Supplying Forage Production; Grassland Agriculture and Forage Seed Association: Tokyo, Japan, 2010; pp. 3–7. (In Japanese) [Google Scholar]
- Cardenas, L.M.; Thorman, R.; Ashlee, N.; Butler, M.; Chadwick, D.; Chambers, B.; Cuttle, S.; Donovan, N.; Kingston, H.; Lane, S.; et al. Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. Agric. Ecosyst. Environ. 2010, 136, 218–226. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
OM in Slurry 1 | CH4 Emission 2 | CH4 Emission 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg ha−1y−1 | kg-CH4 ha−1 y−1 | Mg-CO2-eq ha−1 y−1 | ||||||||||
1st year | 2nd year | 1st year | 2nd year | 1st year | 2nd year | Mean | ||||||
March | May | March | May | March | May | March | May | March | May | March | May | |
2.2 | 2.5 | 2.6 | 2.4 | 52 | 60 | 62 | 57 | 1.3 | 1.5 | 1.5 | 1.4 | 2.9 |
4.7 | 5.0 | 113 | 119 | 2.8 | 3.0 |
Cattle Type | Number 1 | Excreta 2 | OM in Excreta on the Farm 3 | CH4 Emission on the Farm 4 | CH4 Emission per Unit Weight of FYM 5,6 | CH4 Emission per Unit Area of Grassland | ||||
---|---|---|---|---|---|---|---|---|---|---|
kg head−1 d−1 | Mg-CO2-eq ha−1 y−1 | |||||||||
Head | Feces | Urine | kg (30 d)−1 | kg-CH4 (30 d)−1 | kg-CH4 Mg−1 | kg-CO2-eq Mg−1 | 1st year | 2nd year | Mean | |
Lactating | 84.1 | 43 | 14 | 17535 | 666 | 4.4 | 110 | 4.0 | 4.3 | 4.2 |
Non-lactating | 19.9 | 21 | 6 | 2024 | 77 |
Cattle Type | Number 1 | Excreta 2 | N in Excreta on the Farm 3 | N2O Emission on the Farm 4 | N2O Emission per Unit Weight of FYM 5,6 | N2O Emission per Unit Area of Grassland | ||||
---|---|---|---|---|---|---|---|---|---|---|
kg head−1 d−1 | Mg-CO2-eq ha−1 y−1 | |||||||||
Head | Feces | Urine | kg (30 d)−1 | kg-N2O-N (30 d)−1 | kg-N2O Mg−1 | kg-CO2-eq Mg−1 | 1st year | 2nd year | Mean | |
Lactating | 84.1 | 43 | 14 | 717 | 17.2 | 0.18 | 53 | 1.9 | 2.1 | 2.0 |
Non-lactating | 19.9 | 21 | 6 | 79 | 1.9 |
Energy Consumption | CO2 Emission on the Farm 2,3 | FYM Production on the Farm 1 | CO2 Emission per Unit Weight of FYM 1 | CO2 Emission per Unit Area of Grassland 4 | |||
---|---|---|---|---|---|---|---|
Electricity 1 | Light Diesel Oil 1 | Mg-CO2 ha−1 y−1 | |||||
kWh (30 d)−1 | L (30 d)−1 | kg-CO2 (30 d)−1 | Mg (30 d)−1 | kg-CO2 Mg−1 | 1st year | 2nd year | Mean |
712.4 | 160 | 688 | 168.8 | 4.1 | 0.15 | 0.16 | 0.15 |
N in Slurry | N2O Emission 1 | N2O Emission 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
kg-N ha−1 y−1 | kg-N2O-N ha−1 y−1 | Mg-CO2-eq ha−1 y−1 | ||||||||||
1st year | 2nd year | 1st year | 2nd year | 1st year | 2nd year | Mean | ||||||
March | May | March | May | March | May | March | May | March | May | March | May | |
150 | 150 | 150 | 150 | 0.030 | 0.030 | 0.030 | 0.030 | 0.014 | 0.014 | 0.014 | 0.014 | 0.028 |
300 | 300 | 0.060 | 0.060 | 0.028 | 0.028 |
Emission from Synthetic N Fertilizer Manufacture per Unit Weight 1,2 | N application Rate | GHG Emissions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg-N ha−1 y−1 | Mg-CO2-eq ha−1 y−1 | ||||||||||||
1st year | 2nd year | 1st year | 2nd year | Mean | |||||||||
kg Mg-N−1 | kg-CO2-eq Mg-N−1 | Slurry | FYM | Slurry | FYM | Slurry | FYM | Slurry | FYM | Slurry | FYM | ||
CO2 | 2769 | 2769 | 90 | 177 | 90 | 159 | 0.77 | 1.51 | 0.77 | 1.36 | 0.77 | 1.43 | |
CH4 | 0.13 | 3 | |||||||||||
N2O | 19.3 | 5751 | |||||||||||
Emission from Synthetic P Fertilizer Manufacture per Unit Weight 1,2 | P2O5 Application Rate | GHG Emissions | |||||||||||
kg-P2O5 ha−1 y−1 | kg-CO2-eq ha−1 y−1 | ||||||||||||
1st year | 2nd year | 1st year | 2nd year | Mean | |||||||||
kg Mg-P2O5−1 | kg-CO2-eq Mg-P2O5−1 | Slurry | FYM | Slurry | FYM | Slurry | FYM | Slurry | FYM | Slurry | FYM | ||
CO2 | 1117 | 1117 | 49 | 67 | 46 | 45 | 0.06 | 0.08 | 0.05 | 0.05 | 0.06 | 0.07 | |
CH4 | 2.07 | 52 | |||||||||||
N2O | 0.038 | 11 | |||||||||||
Emission from Synthetic K Fertilizer Manufacture per Unit Weight 1,2 | K2O Application Rate | GHG Emissions | |||||||||||
kg-K2O ha−1 y−1 | kg-CO2-eq ha−1 y−1 | ||||||||||||
1st year | 2nd year | 1st year | 2nd year | Mean | |||||||||
kg Mg-K2O−1 | kg-CO2-eq Mg-K2O−1 | Slurry | FYM | Slurry | FYM | Slurry | FYM | Slurry | FYM | Slurry | FYM | ||
CO2 | 617 | 617 | 0 | 0 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CH4 | 1.38 | 35 | |||||||||||
N2O | 0.049 | 15 | |||||||||||
Total | 0.82 | 1.6 | 0.82 | 1.4 | 0.82 | 1.5 |
Machine Operation | Consumption of Light Diesel Oil per Operating Unit | Operating Unit | CO2 Emission 8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg-CO2 ha−1 y−1 | ||||||||||||
1st year | 2nd year | 1st year | 2nd year | Mean | ||||||||
L ha−1 unit−1 | Slurry | FYM | Slurry | FYM | Slurry | FYM | Slurry | FYM | Slurry | FYM | ||
Loading FYM 1 | 30 Mg unit−1 | 10.0 | 0 | 1.22 | 0 | 1.31 | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 | 0.03 |
FYM transport 1,2 | 30 Mg unit−1 | 2.15 | 0 | 1.22 | 0 | 1.31 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 |
FYM spreading 1 | 30 Mg unit−1 | 3.3 | 0 | 1.22 | 0 | 1.31 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 |
Slurry transport 2,3 | 80 Mg unit−1 | 18.4 | 0.83 | 0 | 0.82 | 0 | 0.04 | 0.00 | 0.04 | 0.00 | 0.04 | 0.00 |
Slurry spreading 3 | 80 Mg unit−1 | 3.8 | 0.83 | 0 | 0.82 | 0 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
Fertilizer distribution 2,4 | 500 kg unit−1 | 2.4 | 1.42 | 2.45 | 1.38 | 2.03 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
Grass cutting 2 | ha unit−1 | 8.1 | 4 | 4 | 4 | 4 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
Turning and harvesting 2 | ha unit−1 | 15.35 | 4 | 4 | 4 | 4 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Bailing haylage 2,5 | 7 Mg-DM unit−1 | 19.6 | 1.10 | 1.21 | 1.41 | 1.50 | 0.06 | 0.06 | 0.07 | 0.08 | 0.06 | 0.07 |
Wrapping haylage 2,6 | 3 Mg-DM unit−1 | 11.1 | 2.57 | 2.83 | 3.30 | 3.50 | 0.07 | 0.08 | 0.10 | 0.10 | 0.09 | 0.09 |
Haylage transport 2,7 | 7 Mg-DM unit−1 | 5.6 | 1.10 | 1.21 | 1.41 | 1.50 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Total | 0.47 | 0.49 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, A. Application of Farmyard Manure Rather Than Manure Slurry Mitigates the Net Greenhouse Gas Emissions from Herbage Production System in Nasu, Japan. Atmosphere 2018, 9, 261. https://doi.org/10.3390/atmos9070261
Mori A. Application of Farmyard Manure Rather Than Manure Slurry Mitigates the Net Greenhouse Gas Emissions from Herbage Production System in Nasu, Japan. Atmosphere. 2018; 9(7):261. https://doi.org/10.3390/atmos9070261
Chicago/Turabian StyleMori, Akinori. 2018. "Application of Farmyard Manure Rather Than Manure Slurry Mitigates the Net Greenhouse Gas Emissions from Herbage Production System in Nasu, Japan" Atmosphere 9, no. 7: 261. https://doi.org/10.3390/atmos9070261
APA StyleMori, A. (2018). Application of Farmyard Manure Rather Than Manure Slurry Mitigates the Net Greenhouse Gas Emissions from Herbage Production System in Nasu, Japan. Atmosphere, 9(7), 261. https://doi.org/10.3390/atmos9070261