Impact of Management Practices on Methane Emissions from Paddy Grown on Mineral Soil over Peat in Central Hokkaido, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Field-Management Schemes
2.2. Experimental Layout and Approach
2.3. Gas Sampling and Analysis
2.4. Eh and Soil Temperature Measurement
2.5. Gas Flux Calculation
2.6. Soil and Plant Samples Analysis
2.7. The Decomposition Rates of Rice Straw during the Winter Fallow Period
2.8. Statistical Analysis
3. Results
3.1. Climatic Conditions
3.2. CH4Emissions during Rice-Growing Period
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 87, 1535. [Google Scholar]
- Kim, D.G.; Vargas, R.; Bond-Lamberty, B.; Turetsky, R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lai, D.Y.F.; Sardans, J.; Wang, W.; Zeng, C.; Peñuelas, J. Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management implications. PLoS ONE 2017, 12, e0169254. [Google Scholar] [CrossRef] [PubMed]
- Naser, H.M.; Nagata, O.; Hatano, R. Greenhouse gas fluxes and global warming potentials in crop fields on soil-dressed peatland in Hokkaido, Japan. Phyton 2005, 45, 285–293. [Google Scholar]
- Towprayoon, S.; Smakgahn, K.; Poonkaew, S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 2005, 59, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Lagomarsino, A.; Agnelli, A.E.; Linquist, B.; Adviento-Borbe, M.A.; Agnelli, A.; Gavina, G.; Ravaglia, S.; Ferrara, R.M. Alternate wetting and drying of rice reduced CH4emissions but triggered N2O peaks in a clayey soil of central Italy. Pedosphere 2016, 26, 533–548. [Google Scholar] [CrossRef]
- Wassmann, R.; Lantin, R.S.; Neue, H.U.; Buendia, L.V.; Corton, T.M.; Lu, Y. Characterization of methane emissions in Asia III: Mitigation options and future research needs. Nutr. Cycl. Agroecosyst. 2000, 58, 23–36. [Google Scholar] [CrossRef]
- Noppol, A.; Nathsuda, P. Practices for reducing greenhouse gas emissions from rice production in northeast Thailand. Agriculture 2017, 7, 4. [Google Scholar]
- Eusuf, M.K.; Tokida, T.; Sugiyama, S.; Nakajima, M.; Sameshima, R. Effect of rice straw on CH4 emission in continuous and recent converted paddy field. J. Agric. Meteorol. 2011, 67, 185–192. [Google Scholar]
- Nishimura, S.; Sawamoto, T.; Akiyama, H.; Sudo, S.; Yagi, K. Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Glob. Biogeochem. Cycles 2004, 18, 1–10. [Google Scholar] [CrossRef]
- Wang, M.X.; Li, J. CH4 emission and oxidation in Chinese rice paddies. Nutr. Cycl. Agroecosyst. 2002, 64, 43–55. [Google Scholar]
- Wassmann, R.; Neue, H.U.; Lantin, R.S.; Makarim, K.; Chareonsilp, N.; Buendia, L.V.; Rennenberg, H. Characterization of methane emissions from rice fields in Asia. II. Differences among irrigated, rainfed and deepwater rice. Nutr. Cycl. Agroecosyst. 2000, 58, 13–22. [Google Scholar] [CrossRef]
- Wassmann, R.; Buendia, L.V.; Lantin, R.S. Mechanisms of crop management impact on methane emissions from rice fields in Los Baños, Philippines. Nutr. Cycl. Agroecosyst. 2000, 58, 107–119. [Google Scholar] [CrossRef]
- Lu, W.; Chen, W.; Duan, B.; Guo, W.; Lu, Y.; Lantin, R.S.; Wassmann, R.; Neue, H.U. Methane emissions and mitigation options in irrigated rice fields in southeast China. Nutr. Cycl. Agroecosyst. 2000, 58, 65–73. [Google Scholar] [CrossRef]
- Dubey, S.K. Microbial ecology of methane emission in rice agroecosystem: A review. Appl. Ecol. Environ. Res. 2005, 3, 1–27. [Google Scholar] [CrossRef]
- Kofi, K.B.; George, Y.O.; Ebenezer, M. Rice cultivation and greenhouse gas emissions: A review and conceptual framework with reference to Ghana. Agriculture 2017, 7, 7. [Google Scholar]
- Zheng, H.; Huang, H.; Yao, L.; Liu, J.; He, H.; Tang, J. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Biogeosciences 2014, 11, 3685–3693. [Google Scholar] [CrossRef] [Green Version]
- Baruah, K.K.; Gogoi, B.; Gogoi, P. Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy. Plant Biol. 2010, 16, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, N.; Baruah, K.K.; Gupta, P.K. Selection of rice genotypes for lower methane emission. Agron. Sustain. Dev. 2008, 28, 181–186. [Google Scholar] [CrossRef]
- Khosa, M.K.; Sidhu, B.S.; Benbi, D.K. Effect of organic materials and rice cultivars on methane emission from rice field. J. Environ. Biol. 2012, 31, 281–285. [Google Scholar]
- Yuan, Q.; Pump, J.; Conrad, R. Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences 2014, 11, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Naser, H.M.; Nagata, O.; Tamura, S.; Hatano, R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci. Plant Nutr. 2007, 53, 95–101. [Google Scholar] [CrossRef]
- Vibol, S.; Towprayoon, S. Estimation of methane and nitrous oxide emissions from rice field with rice straw management in Cambodia. Environ. Monit. Assess. 2010, 161, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Ueki, A.; Akasaka, H.; Suzuki, D.; Ueki, K. Propionicimonas paludicola nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int. J. Syst. Evolut. Microbiol. 2006, 56, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Komada, M.; Kimiwada, K.; Awasaki, H. Experiment of Restoring High-Moor Plant Community Based on Ground Water Environment of Peatland; Research Bulletin No. 173 of the Hokkaido National Agricultural Experiment Station; Hokkaido National Agricultural Experiment Station: Sapporo, Japan, 2001.
- DIN ISO 11277: Bodenbeschaffenheit—Bestimmung der Partikelgrößenverteilung in Mineralböden; Beuth: Berlin, Germany, 2002.
- Gee, G.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis, Part 1. Soil Science Society of America. Book Series 5, 2nd ed.; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Yagi, K.; Tsuruta, H.; Kanda, K.; Minami, K. Effect of water management on methane emission from a Japanese rice paddy field—Automated methane monitoring. Glob. Biogeochem. Cycles 1996, 10, 255–267. [Google Scholar] [CrossRef]
- Yagi, K.; Minami, K. Effect of organic matter application on methane emission from some Japanese rice fields. Soil Sci. Plant Nutr. 1990, 36, 599–610. [Google Scholar] [CrossRef]
- Morimura, T.; Narioka, H.; Aso, S.; Takanaga, H.; Yoshiba, M. Methane production and soil physical properties of direct seeding of paddy rice on submerged paddy fields. Jpn. J. Soil Sci. Plant Nutr. 1995, 66, 632–638. [Google Scholar]
- Wang, W.; Laic, D.Y.F.; Sardansd, J.; Wanga, C.; Datta, A.; Pan, T.; Zenga, C.; Bartronsd, M.; Penuelas, J. Rice straw incorporation affects global warming potential differently in early vs. late cropping seasons in Southeastern China. Field Crops Res. 2015, 181, 42–51. [Google Scholar] [CrossRef]
- Adhya, T.K.; Bharati, K.; Mohanty, S.R.; Ramakrishnan, B.; Rao, V.R.; Sethunathan, N.; Wassmann, R. Methane emission from rice fields at Cuttack, India. Nutr. Cycl. Agroecosyst. 2000, 58, 95–105. [Google Scholar] [CrossRef]
- Schütz, H.; Holzapfel-Pschorn, A.; Conrad, R.; Rennenberg, H.; Seiler, W. A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. Atmos. 1989, 94, 16405–16416. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.; Cheng, Y.; Wang, D.; Qin, J.; Jiao, J.; Li, H.; Hu, F. Methane emissions from double-rice cropping system under conventional and no tillage in Southeast China. Soil Tillage Res. 2011, 113, 77–81. [Google Scholar] [CrossRef]
- Kondo, M.; Yasuda, M. Seasonal changes in N2 fixation activity and N enrichment in paddy soils as affected by soil management in the northern area of Japan. Jpn. Agric. Res. Q. 2003, 37, 105–111. [Google Scholar] [CrossRef]
- Lu, Y.; Watanabe, A.; Kimura, M. Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil. Soil Biol. Biochem. 2003, 35, 1223–1230. [Google Scholar] [CrossRef]
- Kisselle, K.W.; Garrett, C.J.; Fu, S.; Hendrix, P.F.; Crossley, D.A., Jr.; Coleman, D.C.; Potter, R.L. Budgets for root-derived C and litter-derived C: Comparison between conventional tillage and no tillage soils. Soil Biol. Biochem. 2001, 33, 1067–1075. [Google Scholar] [CrossRef]
- Mitra, S.; Aulakh, M.S.; Wassmann, R.; Olk, D.C. Triggering of methane production in rice soils by root exudates: Effects of soil properties and crop management. Soil Sci. Soc. Am. J. 2005, 69, 563–570. [Google Scholar] [CrossRef]
- Devevre, O.C.; Horwath, W.R. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biol. Biochem. 2000, 32, 1773–1785. [Google Scholar] [CrossRef]
- Minamikawa, K.; Sakai, N.; Hayashi, H. The effect of ammonium sulfate on methane emission and soil carbon content of a paddy field in Japan. Agric. Ecosyst. Environ. 2005, 107, 371–379. [Google Scholar] [CrossRef]
- Cai, Z.C.; Tsuruta, H.; Minami, K. Methane emission from rice fields in China: Measurements and influencing factors. J. Geophys. Res. 2000, 105, 17231–17242. [Google Scholar] [CrossRef]
- Adhya, T.K.; Mishra, S.R.; Rath, A.K. Methane efflux from rice-based cropping systems under humid tropical conditions of eastern India. Agric. Ecosyst. Environ. 2000, 79, 85–90. [Google Scholar] [CrossRef]
- Mer, J.L.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Tanji, K.K.; Gao, S.; Scardaci, S.C.; Chow, A.T. Characterizing redox status of paddy soils with incorporated rice straw. Geoderma 2003, 114, 333–353. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Ravankar, H.N.; Mishra, B.; Saha, M.N.; Singh, Y.V.; Sahi, D.K.; Sarap, P.A. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- Gao, H.; Chen, X.; Wei, J.; Zhang, Y.; Zhang, L.; Chang, J.; Thompson, M.L. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions. PLoS ONE 2016, 11, e0158172. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.P.; Delaune, R.D.; Lindau, C.W.; Patrick, W.H. Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. Fertil. Res. 1992, 33, 115–121. [Google Scholar] [CrossRef]
- Xu, H.; Hosen, Y. Effect of soil water content and rice straw incorporation in the fallow season on CH4 emissions during fallow and the following rice-cropping seasons. Plant Soil 2010, 335, 373–383. [Google Scholar] [CrossRef]
- Yang, X.; Shang, Q.; Wu, P.; Liu, J.; Shen, Q.; Guo, S.; Xiong, Z. Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan, China. Agric. Ecosyst. Environ. 2010, 137, 308–316. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Wassmann, R.; Villegas-Pangga, G. Impact of elevatedtemperatures on greenhouse gas emissions in rice systems: Interaction withstraw incorporation studied in a growth chamber experiment. Plant Soil 2013, 373, 857–875. [Google Scholar] [CrossRef]
- Gao, S.; Tanji, K.K.; Scardaci, S.C. Impact of rice straw incorporation on soilredox status and sulfide toxicity. Agron. J. 2004, 96, 70–76. [Google Scholar] [CrossRef]
- Minamikawa, K.; Sakai, N. The practical use of water management based onsoil redox potential for decreasing methane emission from a paddy field in Japan. Agric. Ecosyst. Environ. 2006, 116, 181–188. [Google Scholar] [CrossRef]
- Liou, R.M.; Huang, S.N.; Lin, C.W.; Chen, S.H. Methane emission from fields with three various rice straw treatments in Taiwan paddy soils. J. Environ. Sci. Health Part B 2003, 38, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Konno, Y. Methane emission from rice paddy fields after upland farming. Jpn. J. Soil Sci. Plant Nutr. 1998, 69, 333–339. (In Japanese) [Google Scholar]
- Minamikawa, K.; Sakai, N. The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agric. Ecosyst. Environ. 2005, 107, 397–407. [Google Scholar] [CrossRef]
- Corton, T.M.; Bajita, J.B.; Grospe, F.S.; Pamplona, R.R.; Assis, C.A., Jr.; Wassmann, R.; Lantin, R.S.; Buendia, L.B. Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutr. Cycl. Agroecosyst. 2000, 58, 37–53. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Xu, Y.C.; Li, Z.; Guo, Y.X.; Wassmann, R.; Neue, H.U.; Lantin, R.S.; Buendia, L.V.; Ding, Y.P.; Wang, Z.Z. A four-year record of methane emissions from irrigated rice fields in the Beijing region of China. Nutr. Cycl. Agroecosyst. 2000, 58, 55–63. [Google Scholar] [CrossRef]
Site andWater Regime § | SoilType ¶ | Particle Size Distribution (%) | Soil Texture | Bulk Density | ||
---|---|---|---|---|---|---|
Sand | Silt | Clay | (g cm−3) | |||
CF-R | MBP | 53.3 ± 0.54 | 31.4 ± 0.32 | 15.3 ± 0.22 | CL | 1.13 ± 0.11 |
D1-M | MBP | 28.8 ± 1.7 | 47.1 ± 0.92 | 24.2 ± 0.27 | SICL | 0.96 ± 0.09 |
D2-M | MBP | 29.9 ± 1.2 | 46.9 ± 1.32 | 23.1 ± 1.35 | SICL | 0.87 ± 0.10 |
D3-S | MBP | 50.9 ± 0.75 | 33.5 ± 0.27 | 15.6 ± 0.47 | CL | 1.15 ± 0.07 |
Site and Water Regime § | Soil Depth | Soil pH | EC | Total C | Total N | C/N | NO3-N | NH4-N |
---|---|---|---|---|---|---|---|---|
(cm) | m S/m | (g kg−1) | (g kg−1) | Ratio | (µg kg−1) | (µg kg−1) | ||
CF-R | 0–10 | 5.58 ± 0.11 | 8.03 ± 0.10 | 22.4 ± 0.29 | 1.48 ± 0.07 | 15.1 ± 0.51 | 1360 ± 130 | 30 ± 7.22 |
10–20 | 5.76 ± 0.10 | 8.14 ± 0.06 | 21.0 ± 2.21 | 1.48 ± 0.14 | 14.3 ± 0.13 | 1160 ± 170 | 20 ± 2.50 | |
20–30 | 5.62 ± 0.13 | 7.03 ± 0.16 | 26.7 ± 2.03 | 1.83 ± 0.04 | 14.6 ± 1.46 | 550 ± 110 | 240 ± 28.4 | |
30–40 | 5.49 ± 0.04 | 7.54 ± 0.15 | 30.6 ± 2.32 | 2.07 ± 0.19 | 14.8 ± 0.21 | 1030 ± 50 | 280 ± 83.8 | |
40–50 | 5.49 ± 0.04 | 7.72 ± 0.01 | 37.6 ± 2.73 | 2.63 ± 0.10 | 14.3 ± 1.51 | 980 ± 80 | 1980 ± 86.2 | |
D1-M | 0–10 | 5.38 ± 0.01 | 9.14 ± 0.01 | 57.8 ± 1.02 | 3.86 ± 0.18 | 15.0 ± 0.44 | 1560 ± 150 | 660 ± 150 |
10–20 | 5.41 ± 0.06 | 9.34 ± 0.23 | 66.0 ± 2.79 | 4.21 ± 0.49 | 15.7 ± 1.18 | 1720 ± 120 | 800 ± 110 | |
20–30 | 5.31 ± 0.04 | 9.87 ± 0.18 | 148 ± 4.17 | 9.27 ± 0.27 | 16.0 ± 0.91 | 1100 ± 100 | 1630 ± 149 | |
30–40 | 5.24 ± 0.01 | 13.8 ± 0.20 | 188 ± 7.16 | 11.2 ± 0.55 | 16.8 ± 0.18 | 770 ± 80 | 1330 ± 147 | |
40–50 | 5.31 ± 0.05 | 12.2 ± 0.15 | 146 ± 5.68 | 8.73 ± 0.78 | 16.7 ± 0.85 | 320 ± 70 | 900 ± 88.9 | |
D2-M | 0–10 | 5.32 ± 0.11 | 9.06 ± 0.10 | 43.5 ± 1.52 | 3.03 ± 0.18 | 14.3 ± 0.37 | 1180 ± 320 | 300 ± 16.9 |
10–20 | 5.82 ± 0.10 | 7.03 ± 0.06 | 39.1 ± 2.45 | 2.55 ± 0.19 | 15.3 ± 0.18 | 1090 ± 80 | 230 ± 41.9 | |
20–30 | 5.52 ± 0.13 | 7.60 ± 0.16 | 41.2 ± 4.04 | 2.66 ± 0.34 | 15.5 ± 0.50 | 600 ± 70 | 130 ± 34.9 | |
30–40 | 5.48 ± 0.04 | 7.82 ± 0.15 | 165 ± 7.81 | 11.1 ± 0.76 | 14.9 ± 0.72 | 540 ± 70 | 380 ± 75.7 | |
40–50 | 5.42 ± 0.04 | 5.55 ± 0.08 | 146 ± 2.46 | 8.60 ± 0.41 | 16.9 ± 1.69 | 150 ± 30 | 1530 ± 99.6 | |
D3-S | 0–10 | 5.45 ± 0.08 | 5.67 ± 0.04 | 24.7 ± 1.89 | 1.65 ± 0.07 | 15.0 ± 0.50 | 90 ± 10 | 30 ± 12.7 |
10–20 | 5.77 ± 0.03 | 5.92 ± 0.06 | 25.4 ± 2.79 | 1.76 ± 0.12 | 14.4 ± 0.57 | 50 ± 11 | 60 ± 10.5 | |
20–30 | 5.58 ± 0.07 | 7.93 ± 0.08 | 52.5 ± 3.93 | 3.43 ± 0.28 | 15.3 ± 0.12 | 370 ± 30 | 250 ± 61.6 | |
30–40 | 5.52 ± 0.05 | 5.08 ± 0.05 | 166 ± 5.72 | 9.08 ± 0.82 | 18.3 ± 1.03 | 740 ± 40 | 300 ± 86.2 | |
40–50 | - | - | 374 ± 7.64 | 19.8 ± 1.05 | 18.9 ± 0.62 | - | - |
Site and Water Regime § | Field Area | Straw Leftover on Field from Previous Crop | Nitrogen Fertilizer Application | Dates | Rice Variety | Dry Matter Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry Matter | C Conc. | C Amount | Trans-Planting | Multiple/Single-Drainage | Final Drainage for Harvest | Harvest | Grain | Total Biomass † | |||||
(ha) | (g m−2) | (%) | (g C m−2) | (kg N ha−1) | 1st | 2nd | (g m−2) | (g m−2) | |||||
CF-R | 0.18 | 277 ‡ | 44.5 | 123 | 36 | 25-May | - | - | 15-August | 15-September | Kirara 397 | 727 | 1382 |
D1-M | 0.54 | 521 | 41.7 | 217 | 76 | 24-May | 22-June | 25-July | 15-August | 15-September | Kirara 397 | 627 | 1182 |
D2-M | 0.48 | 558 | 40.4 | 225 | 76 | 24-May | 22-June | 25-July | 15-August | 15-September | Nanatsuboshi | 710 | 1278 |
D3-S | 0.35 | 751 | 39.2 | 295 | 36 | 25-May | - | 26-July | 15-August | 25-September | Kirara 397 | 713 | 1306 |
Site § | Soil Type † | Straw Leftover on Field | Methane Emission | CH4 Emission Increment (%) | |
---|---|---|---|---|---|
Daily Average * | Total Seasonal ** | ||||
(g m−2) | (mg CH4-C m−2 Day−1) | (g CH4-C m−2) | Compared with CF-R as No Rice Straw | ||
CF-R | MBP | 277 ‡ | 227 ± 283a | 25.3 ± 8.54a | - |
D1-M | MBP | 521 | 695 ± 67ab | 75.5 ± 24.6ab | 198 |
D2-M | MBP | 558 | 732 ± 685ab | 76.8 ± 30.0ab | 204 |
D3-S | MBP | 751 | 1074 ± 789b | 116 ± 23.5b | 357 |
Place | Location | Rice Straw Applied/Leftover | Water Regime † | Total Seasonal CH4 Emission (g C m−2) | Straw’s Efficiency on CH4Prodn. (g CH4-C g Dry Matter−1) | Sources ‡ | ||
---|---|---|---|---|---|---|---|---|
Lat. | Lon. | Season | Rate (g m−2) | |||||
Ryugasaki, Ibaraki | 35°61′ N | 140°13′ E | off_ | 500 | CF | 11.1 | 0.02 | [28] |
Ryugasaki, Ibraki | 35°61′ N | 140°13′ E | off_ | 500 | DM | 6.47 | 0.01 | [28] |
Ryugasaki, Ibraki | 35°90′ N | 140°2′ E | off_ | 600 | DM | 20.3 | 0.03 | [29] |
Kawachi, Ibaraki | 35°90′ N | 140°25′ E | off_ | 600 | DM | 33.6 | 0.06 | [29] |
Mito, Ibaraki | 36°40′ N | 140°4′ E | off_ | 900 | DM | 9.45 | 0.01 | [29] |
Tsukuba, Ibaraki | 36°01′ N | 140°11′ E | off_ | 600 | DM | 0.83 | 0.001 | [29] |
Atsugi, Kanagawa | 35°24′ N | 139°19′ E | off_ | 600 | DS | 11.3 | 0.02 | [30] |
Mikasa, Hokkaido | 43°14′ N | 141°49′ E | off_ | 80 | CF | 9.84 | 0.12 | [22] |
Mikasa, Hokkaido | 43°14′ N | 141°49′ E | off_ | 105 | CF | 9.09 | 0.09 | [22] |
Mikasa, Hokkaido | 43°14′ N | 141°49′ E | off_ | 190 | CF | 38.9 | 0.20 | [22] |
Mikasa, Hokkaido | 43°14′ N | 141°49′ E | off_ | 219 | CF | 40.8 | 0.19 | [22] |
Fujian, China | 25°59′ N | 119°38′ E | on_ | 330 | CF | 28.0 | 0.08 | [31] |
Cuttack, India | 20°25′ N | 85°55′ E | on_ | 200 | CF | 2.71 | 0.01 | [32] |
Bibai, Hokkaido | 43°18′32″ N | 141°43′21″ E | off_ | 277§ | CF | 25.3 | 0.09 | TS¶ |
Bibai, Hokkaido | 43°18′13″ N | 141°44′22″ E | off_ | 521 | DM | 75.5 | 0.14 | TS |
Bibai, Hokkaido | 43°18′16″ N | 141°44′12″ E | off_ | 558 | DM | 76.8 | 0.14 | TS |
Bibai, Hokkaido | 43°18′30″ N | 141°43′17″ E | off_ | 751 | DS | 116 | 0.15 | TS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naser, H.M.; Nagata, O.; Sultana, S.; Hatano, R. Impact of Management Practices on Methane Emissions from Paddy Grown on Mineral Soil over Peat in Central Hokkaido, Japan. Atmosphere 2018, 9, 212. https://doi.org/10.3390/atmos9060212
Naser HM, Nagata O, Sultana S, Hatano R. Impact of Management Practices on Methane Emissions from Paddy Grown on Mineral Soil over Peat in Central Hokkaido, Japan. Atmosphere. 2018; 9(6):212. https://doi.org/10.3390/atmos9060212
Chicago/Turabian StyleNaser, Habib Mohammad, Osamu Nagata, Sarmin Sultana, and Ryusuke Hatano. 2018. "Impact of Management Practices on Methane Emissions from Paddy Grown on Mineral Soil over Peat in Central Hokkaido, Japan" Atmosphere 9, no. 6: 212. https://doi.org/10.3390/atmos9060212
APA StyleNaser, H. M., Nagata, O., Sultana, S., & Hatano, R. (2018). Impact of Management Practices on Methane Emissions from Paddy Grown on Mineral Soil over Peat in Central Hokkaido, Japan. Atmosphere, 9(6), 212. https://doi.org/10.3390/atmos9060212