Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain
Abstract
:1. Introduction
2. Current Research Developments
- Climate applications have become as important as NWP and high-impact weather prediction, also—and especially—in mountainous areas (e.g., [20]).
- For proper impact modeling, atmospheric models, which were traditionally developed for, and seen as NWP models, are developing into Earth System Models (i.e., atmospheric models coupled with e.g., hydrological or atmospheric chemistry and dispersion models) containing chemical and biological processes in addition to pure hydrodynamics.
3. Exchange Processes
3.1. The Mountain Boundary Layer (MBL)
3.1.1. Unstable (Daytime) Conditions
3.1.2. Stable (Nighttime) Conditions
3.1.3. MBL Height
3.2. Transport from and to the Surface
3.2.1. Mass
3.2.2. Momentum
3.2.3. Energy
4. Challenges and Open Problems
4.1. Modeling Challenges
4.2. Theoretical Challenges
4.3. Measurement Challenges
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary
ABL | atmospheric boundary layer |
ALPEX | Alpine Experiment |
COPS | Convective and Orographically Induced Precipitation Study |
COSMO | Consortium for Small-Scale Modeling |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EURO-CORDEX | Coordinated Downscaling Experiment—European Domain |
FT | free troposphere |
GEWEX | Global Energy and Water Exchanges project |
GLASS | Global Land-Atmosphere System Study |
IFS | Integrated Forecast System |
LoCo | Land-Atmosphere Coupling |
MAP | Mesoscale Alpine Programme |
MBL | mountain boundary layer |
ML | mixed layer |
MOST | Monin-Obukhov Similarity Theory |
NWP | numerical weather prediction |
PYREX | Pyrénées Experiment |
SVA | stable valley atmosphere |
T-REX | Terrain-Induced Rotor Experiment |
TZ | transition zone |
WMO | World Meteorological Organization |
WRF | Weather Research and Forecasting |
height of the mixing layer over horizontally homogeneous and flat terrain | |
height of the valley inversion | |
height of the MBL | |
height of the slope-flow layer |
References
- Houze, R.A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, RG1001:1–RG1001:47. [Google Scholar] [CrossRef]
- Baines, P.G. Topographic Effects in Stratified Flows; Cambridge University Press: Cambridge, UK, 1995; ISBN 978-0521629232. [Google Scholar]
- Nappo, C.J. An Introduction to Atmospheric Gravity Waves, 2nd ed.; Elsevier: Waltham, MA, USA, 2012; ISBN 978-0-12-385223-6. [Google Scholar]
- Buzzi, A.; Tibaldi, S. Cyclogenesis in the lee of the Alps: A case study. Q. J. R. Meteorol. Soc. 1978, 104, 271–287. [Google Scholar] [CrossRef]
- McTaggart-Cowan, R.; Galarneau, T.J.; Bosart, L.F.; Milbrandt, J.A. Development and tropical transition of an Alpine lee cyclone. Part II: Orographic influence on the development pathway. Mon. Weather Rev. 2010, 138, 2308–2326. [Google Scholar] [CrossRef]
- Rotach, M.W.; Gohm, A.; Lang, M.N.; Leukauf, D.; Stiperski, I.; Wagner, J.S. On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain. Front. Earth Sci. 2015, 3, 76:1–76:14. [Google Scholar] [CrossRef]
- Markl, Y. Spatial Interpolation and Analysis of Airborne Meteorological Data in an Alpine Valley. Master’s Thesis, University of Innsbruck, Innsbruck, Austria, 2016. [Google Scholar]
- Kuettner, J.P. The aim and conduct of ALPEX. In Scientific Results of the Alpine Experiment; WMO/TD No. 108; World Meteorological Organization: Geneva, Switzerland, 1986; pp. 3–14. [Google Scholar]
- Scientific Results of the Alpine Experiment (ALPEX); WMO/TD No. 108; GARP Publications Series No. 27; World Meteorological Organization: Geneva, Switzerland, 1986.
- Bougeault, P.; Benech, B.; Bessemoulin, P.; Carissimo, B.; Jansa Clar, A.; Pelon, J.; Petitdidier, M.; Richard, E. PYREX: A summary of findings. Bull. Am. Meteorol. Soc. 1997, 78, 637–650. [Google Scholar] [CrossRef]
- Binder, P.; Schär, C. MAP Design Proposal; MeteoSwiss: Zuerich, Switzerland, 1996. [Google Scholar]
- Volkert, H.; Gutermann, T. Inter-domain cooperation for mesoscale atmospheric laboratories: The Mesoscale Alpine Programme as a rich study case. Q. J. R. Meteorol. Soc. 2007, 133, 949–967. [Google Scholar] [CrossRef] [Green Version]
- Bougeault, P.; Binder, P.; Buzzi, A.; Dirks, R.; Houze, R.; Kuettner, J.; Smith, R.B.; Steinacker, R.; Volkert, H. The MAP Special Observing Period. Bull. Am. Meteorol. Soc. 2001, 82, 433–462. [Google Scholar] [CrossRef] [Green Version]
- Ranzi, R.; Bacchi, B.; Grossi, G. Runoff measurements and hydrological modelling for the estimation of rainfall volumes in an Alpine basin. Q. J. R. Meteorol. Soc. 2003, 129, 653–672. [Google Scholar] [CrossRef] [Green Version]
- Zappa, M.; Rotach, M.W.; Arpagaus, M.; Dorninger, M.; Hegg, C.; Montani, A.; Ranzi, R.; Ament, F.; Germann, U.; Grossi, G.; et al. MAP D-PHASE: Real-time demonstration of hydrological ensemble prediction systems. Atmos. Sci. Lett. 2008, 9, 80–87. [Google Scholar] [CrossRef]
- Rotach, M.W.; Ambrosetti, P.; Ament, F.; Appenzeller, C.; Arpagaus, M.; Bauer, H.S.; Behrendt, A.; Bouttier, F.; Buzzi, A.; Corazza, M.; et al. MAP D-PHASE: Real-time demonstration of weather forecast quality in the Alpine region. Bull. Am. Meteorol. Soc. 2009, 90, 1321–1336. [Google Scholar] [CrossRef]
- Santanello, J.P.; Dirmeyer, P.A.; Ferguson, C.R.; Findell, K.L.; Tawfik, A.B.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B.P.; van Heerwarden, C.; et al. Land-Atmosphere Interactions: The LoCo Perspective. Bull. Am. Meteorol. Soc. 2017. [Google Scholar] [CrossRef]
- Wolf, B.; Chwala, C.; Fersch, B.; Garvelmann, J.; Junkermann, W.; Zeeman, M.J.; Angerer, A.; Adler, B.; Beck, C.; Brosy, C.; et al. The SCALEX campaign: Scale-crossing land surface and boundary layer processes in the TERENO-preAlpine observatory. Bull. Am. Meteorol. Soc. 2017, 98, 1217–1234. [Google Scholar] [CrossRef]
- Van den Hurk, B.; Best, M.; Dirmeyer, P.; Pitman, A.; Polcher, J.; Santanello, J. Acceleration of land surface model development over a decade of GLASS. Bull. Am. Meteorol. Soc. 2011, 92, 1593–1600. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Auer, I.; Böhm, R.; Jurkovic, A.; Lipa, W.; Orlik, A.; Potzmann, R.; Schöner, W.; Ungersböck, M.; Matulla, C.; Briffa, K.; et al. HISTALP-historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 2007, 27, 17–46. [Google Scholar] [CrossRef]
- Brunetti, M.; Lentini, G.; Maugeri, M.; Nanni, T.; Auer, I.; Böhm, R.; Schöner, W. Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int. J. Climatol. 2009, 29, 2197–2225. [Google Scholar] [CrossRef] [Green Version]
- Kotlarski, S.; Bosshard, T.; Lüthi, D.; Pall, P.; Schär, C. Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim. Chang. 2012, 112, 189–215. [Google Scholar] [CrossRef]
- Letcher, T.W.; Minder, J.R. Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J. Clim. 2015, 28, 7576–7595. [Google Scholar] [CrossRef]
- Minder, J.R.; Letcher, T.W.; Liu, C. The character and causes of elevation-dependent warming in high-resolution simulations of Rocky Mountain climate change. J. Clim. 2017. [Google Scholar] [CrossRef]
- Rajczak, J.; Pall, P.; Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 2013, 118, 3610–3626. [Google Scholar] [CrossRef] [Green Version]
- Calanca, P. Climate change and drought occurrence in the Alpine region: How severe are becoming the extremes? Glob. Planet. Chang. 2007, 57, 151–160. [Google Scholar] [CrossRef]
- Klaus, M.; Holsten, A.; Hostert, P.; Kropp, J.P. Integrated methodology to assess windthrow impacts on forest stands under climate change. For. Ecol. Manag. 2011, 261, 1799–1810. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Palmer, T.N.; Shutts, G.J.; Swinbank, R. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Q. J. R. Meteorol. Soc. 1986, 112, 1001–1039. [Google Scholar] [CrossRef]
- Noppel, H.; Fiedler, F. Mesoscale heat transport over complex terrain by slope winds—A conceptual model and numerical simulations. Bound. Layer Meteorol. 2002, 104, 73–97. [Google Scholar] [CrossRef]
- Henne, S.; Furger, M.; Prévôt, A.S.H. Climatology of mountain-induced elevated moisture layers in the lee of the Alps. J. Appl. Meteorol. 2005, 44, 620–633. [Google Scholar] [CrossRef]
- Lilly, D.K.; Kennedy, P.J. Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci. 1973, 30, 1135–1152. [Google Scholar] [CrossRef]
- Leukauf, D.; Gohm, A.; Rotach, M.W. Toward generalizing the impact of surface heating, stratification, and terrain geometry on the daytime heat export from an idealized valley. J. Appl. Meteorol. Climatol. 2017, 56, 2711–2727. [Google Scholar] [CrossRef]
- Rotach, M.W.; Wohlfahrt, G.; Hansel, A.; Reif, M.; Wagner, J.; Gohm, A. The world is not flat—Implications for the global carbon balance. Bull. Am. Meteorol. Soc. 2014, 95, 1021–1028. [Google Scholar] [CrossRef]
- De Morsier, G.; Fuhrer, O.; Arpagaus, M. Challenges for a new 1-km non-hydrostatic model over the Alpine area. In Proceedings of the AMS 15th Conference on Mountain Meteorology, Steamboat Springs, CO, USA, 20 August 2012. [Google Scholar]
- Goger, B.; Rotach, M.W.; Gohm, A.; Stiperski, I.; Fuhrer, O. Current challenges for numerical weather prediction in complex terrain: Topography representation and parameterizations. In Proceedings of the 2016 International Conference on High Performance Computing and Simulation (HPCS 2016), Innsbruck, Austria, 18–22 July 2016. [Google Scholar]
- Goger, B.; Rotach, M.W.; Gohm, A.; Fuhrer, O.; Stiperski, I.; Holtslag, A.A.M. The impact of 3D effects on the simulation of turbulence kinetic energy structure in a major Alpine valley. Bound. Layer Meteorol. 2018, 168, 1–27. [Google Scholar] [CrossRef]
- De Wekker, S.F.J.; Giovannini, L.; Gutmann, E.; Knievel, J.C.; Kossmann, M.; Zardi, D. Meteorological applications benefiting from an improved understanding of atmospheric exchange processes over mountains. Atmosphere 2018. in preparation. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; ISBN 978-90-277-2769-5. [Google Scholar]
- Zilitinkevich, S.S.; Tyuryakov, S.A.; Troitskaya, Y.I.; Mareev, E.A. Theoretical models of the height of the atmospheric boundary layer and turbulent entrainment at its upper boundary. Izv. Atmos. Ocean. Phys. 2012, 48, 133–142. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.-E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Whiteman, C.D. Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteorol. 1982, 21, 270–289. [Google Scholar] [CrossRef]
- Leukauf, D.; Gohm, A.; Rotach, M.W.; Wagner, J. The impact of the temperature inversion breakup on the exchange of heat and mass in an idealized valley: Sensitivity to the radiative forcing. J. Appl. Meteorol. Climatol. 2015, 54, 2199–2216. [Google Scholar] [CrossRef]
- Weigel, A.P.; Rotach, M.W. Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Q. J. R. Meteorol. Soc. 2004, 130, 2605–2627. [Google Scholar] [CrossRef] [Green Version]
- Egger, J.; Bajrachaya, S.; Heinrich, R.; Kolb, P.; Lämmlein, S.; Mech, M.; Reuder, J.; Schäper, W.; Shakya, P.; Schween, J.; et al. Diurnal winds in the Himalayan Kali Gandaki Valley. Part III: Remotely piloted aircraft soundings. Mon. Weather Rev. 2002, 130, 2042–2058. [Google Scholar] [CrossRef]
- Zhong, S.; Fast, J. An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign Data in the Salt Lake Valley. Mon. Weather Rev. 2003, 131, 1301–1322. [Google Scholar] [CrossRef]
- Weigel, A.P.; Chow, F.K.; Rotach, M.W. On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Bound. Layer Meteorol. 2007, 123, 177–199. [Google Scholar] [CrossRef]
- Wagner, J.S.; Gohm, A.; Rotach, M.W. The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Q. J. R. Meteorol. Soc. 2015, 141, 1780–1794. [Google Scholar] [CrossRef]
- Ekhart, E. On the thermal structure of the mountain atmosphere. In Alpine Meteorology: Translations of Classic Contributions by A. Wagner, E. Ekhart and F. Defant; Whiteman, C.D., Dreiseitl, E., Eds.; Pacific Northwest Laboratory: Richland, WA, USA, 1984. [Google Scholar]
- De Wekker, S.F.J.; Kossmann, M. Convective boundary layer heights over mountainous terrain—A review of concepts. Front. Earth Sci. 2015, 3, 77:1–77:22. [Google Scholar] [CrossRef]
- Wagner, J.S.; Gohm, A.; Rotach, M.W. Influence of along-valley terrain heterogeneity on exchange processes over idealized valleys. Atmos. Chem. Phys. 2015, 15, 6589–6603. [Google Scholar] [CrossRef] [Green Version]
- Leukauf, D.; Gohm, A.; Rotach, M.W. Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime. Atmos. Chem. Phys. 2016, 16, 13049–13066. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.N.; Gohm, A.; Wagner, J.S. The impact of embedded valleys on daytime pollution transport over a mountain range. Atmos. Chem. Phys. 2015, 15, 11981–11998. [Google Scholar] [CrossRef] [Green Version]
- Mallaun, C.; Giez, A.; Baumann, R. Calibration of 3-D wind measurements on a single-engine research aircraft. Atmos. Meas. Tech. 2015, 8, 3177–3196. [Google Scholar] [CrossRef] [Green Version]
- Laiti, L.; Zardi, D.; de Franceschi, M.; Rampanelli, G. Atmospheric boundary layer structures associated with the Ora del Garda wind in the Alps as revealed from airborne and surface measurements. Atmos. Res. 2013, 132–133, 473–489. [Google Scholar] [CrossRef]
- Nyeki, S.; Kalberer, M.; Colbeck, I.; De Wekker, S.; Furger, M.; Gäggeler, H.W.; Kossmann, M.; Lugauer, M.; Steyn, D.; Weingartner, E.; et al. Convective boundary layer evolution to 4 km asl over high-alpine terrain: Airborne lidar observations in the Alps. Geophys. Res. Lett. 2000, 27, 689–692. [Google Scholar] [CrossRef]
- Zardi, D.; Whiteman, C.D. Diurnal mountain wind systems. In Mountain Weather Research and Forecasting; Chow, F.K., De Wekker, S.F., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 35–119. ISBN 978-94-007-4097-6. [Google Scholar]
- Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.F.J.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidli, J.; et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 2018, 9, 102. [Google Scholar] [CrossRef]
- Lareau, N.P.; Crosman, E.; Whiteman, C.D.; Horel, J.D.; Hoch, S.W.; Brown, W.O.J.; Horst, T.W. The Persistent Cold-Air Pool Study. Bull. Am. Meteorol. Soc. 2013, 94, 51–63. [Google Scholar] [CrossRef]
- Strauss, L.; Serafin, S.; Grubišić, V. Atmospheric rotors and severe turbulence in a long deep valley. J. Atmos. Sci. 2016, 73, 1481–1506. [Google Scholar] [CrossRef]
- Vosper, S.B.; Ross, A.N.; Renfrew, I.A.; Sheridan, P.F.; Elvidge, A.D.; Grubisić, V. Current challenges in orographic flow dynamics: Turbulent exchange due to gravity-wave processes. Atmosphere 2018. submitted. [Google Scholar]
- Doyle, J.D.; Grubišić, V.; Brown, W.O.J.; de Weker, S.F.J.; Dörnbrack, A.; Jiang, Q.; Mayor, S.D.; Weissmann, M. Observations and numerical simulations of subrotor vortices during T-REX. J. Atmos. Sci. 2009, 66, 1229–1249. [Google Scholar] [CrossRef]
- Catalano, F.; Moeng, C.-H. Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model. Bound. Layer Meteorol. 2010, 137, 49–75. [Google Scholar] [CrossRef]
- Sullivan, P.P.; Moeng, C.-H.; Stevens, B.; Lenschow, D.H.; Mayor, S.D. Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci. 1998, 55, 3042–3064. [Google Scholar] [CrossRef]
- Emeis, S.; Schäfer, K.; Münkel, C. Surface-based remote sensing of the mixing-layer height—A review. Meteorol. Z. 2008, 17, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Nieuwstadt, F.T.M. The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with Cabauw observations. Bound. Layer Meteorol. 1981, 20, 3–17. [Google Scholar] [CrossRef]
- Grubišić, V.; Doyle, J.D.; Kuettner, J.; Mobbs, S.; Smith, R.B.; Whiteman, C.D.; Dirks, R.; Czyzyk, S.; Cohn, S.A.; Vosper, S.; et al. The Terrain-induced Rotor Experiment—A field campaign overview including observational highlights. Bull. Am. Meteorol. Soc. 2008, 89, 1513–1534. [Google Scholar] [CrossRef]
- Schmidli, J. Daytime heat transfer processes over mountainous terrain. J. Atmos. Sci. 2013, 70, 4041–4066. [Google Scholar] [CrossRef]
- Steyn, D.G.; De Wekker, S.F.J.; Kossmann, M.; Martilli, A. Boundary layers and air quality in mountainous terrain. In Mountain Weather Research and Forecasting; Chow, F.K., De Wekker, S.F., Snyder, B., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 261–289. ISBN 978-94-007-4097-6. [Google Scholar]
- Kirshbaum, D.J.; Adler, B.; Kalthoff, N.; Barthlott, C.; Serafin, S. Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere 2018, 9, 80. [Google Scholar] [CrossRef]
- Lugauer, M.; Winkler, P. Thermal circulation in South Bavaria—Climatology and synoptic aspects. Meteorol. Z. 2005, 14, 15–30. [Google Scholar] [CrossRef]
- Graf, M.; Kossmann, M.; Trusilova, K.; Mühlbacher, G. Identification and climatology of Alpine pumping from a regional climate simulation. Front. Earth Sci. 2016, 4, 5:1–5:11. [Google Scholar] [CrossRef]
- Kurita, H.; Ueda, H.; Mitsumoto, S. Combination of local wind systems under light gradient wind conditions and its contribution to the long-range transport of air pollutants. J. Appl. Meteorol. 1990, 29, 331–348. [Google Scholar] [CrossRef]
- Vosper, S.B.; Brown, A.R.; Webster, S. Orographic drag on islands in the NWP mountain grey zone. Q. J. R. Meteorol. Soc. 2016, 142, 3128–3137. [Google Scholar] [CrossRef]
- Durran, D.R. Lee waves and mountain waves. Encycl. Atmos. Sci. 2003, 1161–1169. [Google Scholar] [CrossRef]
- Woods, B.K.; Smith, R.B. Energy flux and wavelet diagnostics of secondary mountain waves. J. Atmos. Sci. 2010, 67, 3721–3737. [Google Scholar] [CrossRef]
- Jiang, Q.; Smith, R.B. Cloud timescales and orographic precipitation. J. Atmos. Sci. 2003, 60, 1543–1559. [Google Scholar] [CrossRef]
- Colle, B.A. Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci. 2004, 61, 588–606. [Google Scholar] [CrossRef]
- Schär, C. Mesoscale mountains and the larger-scale atmospheric dynamics: A review. In Meteorology at the Millenium, 1st ed.; Academic Press: Cambridge, MA, USA, 2002; pp. 29–42. ISBN 9780080511498. [Google Scholar]
- Gaberšek, S.; Durran, D.R. Gap flows through idealized topography. Part I: Forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci. 2004, 61, 2846–2862. [Google Scholar] [CrossRef]
- Neiman, P.J.; Ralph, F.M.; White, A.B.; Kingsmill, D.E.; Persson, P.O.G. The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Weather Rev. 2002, 130, 1468–1492. [Google Scholar] [CrossRef]
- Cox, J.A.W.; Steenburgh, W.J.; Kingsmill, D.E.; Shafer, J.C.; Colle, B.A.; Bousquet, O.; Smull, B.F.; Cai, H. The kinematic structure of a Wasatch Mountain winter storm during IPEX IOP3. Mon. Weather Rev. 2005, 133, 521–542. [Google Scholar] [CrossRef]
- Rotunno, R.; Houze, R.A. Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc. 2007, 133, 811–830. [Google Scholar] [CrossRef] [Green Version]
- Schmidli, J.; Rotunno, R. Mechanisms of along-valley winds and heat exchange over mountainous terrain. J. Atmos. Sci. 2010, 67, 3033–3047. [Google Scholar] [CrossRef]
- Gohm, A.; Harnisch, F.; Vergeiner, J.; Obleitner, F.; Schnitzhofer, R.; Hansel, A.; Fix, A.; Neininger, B.; Emeis, S.; Schäfer, K. Air pollution transport in an Alpine valley: Results from airborne and ground-based observations. Bound. Layer Meteorol. 2009, 131, 441–463. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.S.; Gohm, A.; Rotach, M.W. The impact of horizontal model grid resolution on the boundary layer structure over an idealized valley. Mon. Weather Rev. 2014, 142, 3446–3465. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Doran, J.C. The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteorol. 1993, 32, 1669–1682. [Google Scholar] [CrossRef]
- Kossmann, M.; Sturman, A.P. Pressure-driven channelling effects in bent valleys. J. Appl. Meteorol. 2003, 42, 151–158. [Google Scholar] [CrossRef]
- Doyle, J.D.; Durran, D.R. The dynamics of mountain-wave-induced rotors. J. Atmos. Sci. 2002, 59, 186–201. [Google Scholar] [CrossRef]
- Adler, B.; Kalthoff, N. The impact of upstream flow on the atmospheric boundary layer in a valley on a mountainous island. Bound. Layer Meteorol. 2016, 158, 429–452. [Google Scholar] [CrossRef]
- Hertenstein, R.F.; Kuettner, J.P. Rotor types associated with steep lee topography: Influence of the wind profile. Tellus 2005, 57A, 117–135. [Google Scholar] [CrossRef]
- Nappo, C.J.; Chimonas, G. Wave exchange between the ground surface and a boundary-layer critical level. J. Atmos. Sci. 1992, 49, 1075–1091. [Google Scholar] [CrossRef]
- Tsiringakis, A.; Steeneveld, G.J.; Holtslag, A.A.M. Small-scale orographic gravity wave drag in stable boundary layers and its impact on synoptic systems and near-surface meteorology. Q. J. R. Meteorol. Soc. 2017, 143, 1504–1516. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Holtslag, A.A.M.; Nappo, C.J.; van de Wiel, B.J.H.; Mahrt, L. Exploring the possible role of small-scale terrain drag on stable boundary layers over land. J. Appl. Meteorol. Climatol. 2008, 47, 2518–2530. [Google Scholar] [CrossRef]
- Poulos, G.; Zhong, S. An observational history of small-scale katabatic winds in mid-latitudes. Geogr. Compass 2008, 2, 1798–1821. [Google Scholar] [CrossRef]
- Haiden, T.; Whiteman, C.D. Katabatic flow mechanisms on a low-angle slope. J. Appl. Meteorol. 2005, 44, 113–126. [Google Scholar] [CrossRef]
- Lehner, M.; Gohm, A. Idealised simulations of daytime pollution transport in a steep valley and its sensitivity to thermal striatification and surface albedo. Bound. Layer Meteorol. 2010, 134, 327–351. [Google Scholar] [CrossRef]
- Kossmann, M.; Corsmeier, U.; De Wekker, S.F.J.; Fiedler, F.; Vögtlin, R.; Kalthoff, N.; Gusten, H.; Neininger, B. Observations of handover processes between the atmospheric boundary layer and the free troposphere over mountainous terrain. Contrib. Atmos. Phys. 1999, 72, 329–350. [Google Scholar]
- Rampanelli, G.; Zardi, D.; Rotunno, R. Mechanisms of up-valley winds. J. Atmos. Sci. 2004, 61, 3097–3111. [Google Scholar] [CrossRef]
- Adler, B.; Kalthoff, N. Multi-scale transport processes observed in the boundary layer over a mountainous island. Bound. Layer Meteorol. 2014, 153, 515–537. [Google Scholar] [CrossRef]
- Serafin, S.; Zardi, D. Daytime development of the boundary layer over a plain and in a valley under fair weather conditions: A comparison by means of idealized numerical simulations. J. Atmos. Sci. 2011, 68, 2128–2141. [Google Scholar] [CrossRef]
- Lehner, M.; Whiteman, C.D.; Dorninger, M. Inversion build-up and cold-air outflow in a small Alpine sinkhole. Bound. Layer Meteorol. 2017, 163, 497–522. [Google Scholar] [CrossRef]
- Vergeiner, I.; Dreiseitl, E. Valley winds and slope winds—Observations and elementary thoughts. Meteorol. Atmos. Phys. 1987, 36, 264–286. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. Numerical simulations of conditionally unstable flows over a mountain ridge. J. Atmos. Sci. 2009, 66, 1865–1885. [Google Scholar] [CrossRef]
- Chen, S.-H.; Lin, Y.-L. Effects of moist Froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge. J. Atmos. Sci. 2005, 62, 331–350. [Google Scholar] [CrossRef]
- Fuhrer, O.; Schär, C. Embedded cellular convection in moist flow past topography. J. Atmos. Sci. 2005, 62, 2810–2828. [Google Scholar] [CrossRef]
- Kirshbaum, D.J.; Durran, D.R. Observations and modeling of banded orographic convection. J. Atmos. Sci. 2005, 62, 1463–1479. [Google Scholar] [CrossRef]
- Bennett, L.J.; Blyth, A.M.; Burton, R.R.; Gadian, A.M.; Weckwerth, T.M.; Behrendt, A.; Di Girolamo, P.; Dorninger, M.; Lock, S.-J.; Smith, V.H.; et al. Initiation of convection over the Black Forest mountains during COPS IOP15a. Q. J. R. Meteorol. Soc. 2011, 137, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, D.F.; Pardyjak, E.R.; Higgins, C.W.; Huwald, H.; Parlange, M.B. Flow during the evening transition over steep Alpine slopes. Q. J. R. Meteorol. Soc. 2013, 139, 607–624. [Google Scholar] [CrossRef]
- Skyllingstad, E.D. Large-eddy simulation of katabatic flows. Bound. Layer Meteorol. 2003, 106, 217–243. [Google Scholar] [CrossRef]
- Serafin, S.; Zardi, D. Daytime heat transfer processes related to slope flows and turbulent convection in an idealized mountain valley. J. Atmos. Sci. 2010, 67, 3739–3756. [Google Scholar] [CrossRef]
- Vosper, S.B.; Hughes, J.K.; Lock, A.P.; Sheridan, P.F.; Ross, A.N.; Jemmett-Smith, B.; Brown, A.R. Cold-pool formation in a narrow valley. Q. J. R. Meteorol. Soc. 2014, 140, 699–714. [Google Scholar] [CrossRef]
- Kalthoff, N.; Träumner, K.; Adler, B.; Späth, S.; Behrendt, A.; Wieser, A.; Handwerker, J.; Madonna, F.; Wulfmeyer, V. Dry and moist convection in the boundary layer over the Black Forest—A combined analysis of in situ and remote sensing data. Meteorol. Z. 2013, 22, 445–461. [Google Scholar] [CrossRef]
- Hoch, S.W.; Whiteman, C.D.; Mayer, B. A systematic study of longwave radiative heating and cooling within valleys and basins using a three-dimensional radiative transfer model. J. Appl. Meteorol. Climatol. 2011, 50, 2473–2489. [Google Scholar] [CrossRef]
- Rendón, A.M.; Salazar, J.F.; Palacio, C.A.; Wirth, V.; Brötz, B. Effects of urbanization on the temperature inversion breakup in a mountain valley with implications for air quality. J. Appl. Meteorol. Climatol. 2014, 53, 840–858. [Google Scholar] [CrossRef]
- Weigel, A.P.; Chow, F.K.; Rotach, M.W. The effect of mountainous topography on moisture exchange between the “surface” and the free atmsophere. Bound. Layer Meteorol. 2007, 125, 227–244. [Google Scholar] [CrossRef]
- De Wekker, S.F.J.; Steyn, D.G.; Nyeki, S. A comparison of aerosol-layer and convective boundary-layer structure over a mountain range during STAARTE ‘97. Bound. Layer Meteorol. 2004, 113, 249–271. [Google Scholar] [CrossRef]
- Kalthoff, N.; Horlacher, V.; Corsmeier, U.; Volz-Thomas, A.; Kolahgar, B.; Geiß, H.; Möllmann-Coers, M.; Knaps, A. Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area. J. Geophys. Res. 2000, 105, 1585–1597. [Google Scholar] [CrossRef] [Green Version]
- Rendón, A.M.; Salazar, J.F.; Palacio, C.A.; Wirth, V. Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. J. Appl. Meteorol. Climatol. 2015, 54, 302–321. [Google Scholar] [CrossRef]
- Harnisch, F.; Gohm, A.; Fix, A.; Schnitzhofer, R.; Hansel, A.; Neininger, B. Spatial distribution of aerosols in the Inn Valley atmosphere during wintertime. Meteorol. Atmos. Phys. 2009, 103, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, C.D.; Hoch, S.W.; Horel, J.D.; Charland, A. Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos. Environ. 2014, 94, 742–753. [Google Scholar] [CrossRef]
- Green, M.C.; Chow, J.C.; Watson, J.G.; Dick, K.; Inouye, D. Effects of snow cover and atmospheric stability on winter PM2.5 concentrations in western U.S. valleys. J. Appl. Meteorol. Climatol. 2015, 54, 1191–1201. [Google Scholar] [CrossRef]
- Chemel, C.; Arduini, G.; Staquet, C.; Largeron, Y.; Legain, D.; Tzanos, D.; Paci, A. Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley. Atmos. Environ. 2016, 128, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Lareau, N.P.; Horel, J.D. Turbulent erosion of persistent cold-air pools: Numerical simulations. J. Atmos. Sci. 2015, 72, 1409–1427. [Google Scholar] [CrossRef]
- Wulfmeyer, V.; Behrendt, A.; Bauer, H.-S.; Kottmeier, C.; Corsmeier, U.; Blyth, A.; Craig, G.; Schumann, U.; Hagen, M.; Crewell, S.; et al. The convective and orographically induced precipitation study. Bull. Am. Meteorol. Soc. 2008, 89, 1477–1486. [Google Scholar] [CrossRef]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: New York, NY, USA, 2000; ISBN 0-19-513271-8. [Google Scholar]
- Sawyer, J.S. The introduction of the effects of topography into methods of numerical forecasting. Q. J. R. Meteorol. Soc. 1959, 85, 31–43. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. Climatol. 2012, 51, 300–316. [Google Scholar] [CrossRef]
- Sandu, I.; Beljaars, A.; Bechtold, P.; Mauritsen, T.; Balsamo, G. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst. 2013, 5, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Zilitinkevich, S.S.; Elperin, T.; Kleeorin, N.; Rogachevskii, I. Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound. Layer Meteorol. 2007, 125, 167–191. [Google Scholar] [CrossRef] [Green Version]
- Pithan, F.; Angevine, W.; Mauritsen, T. Improving a global model from the boundary layer: Total turbulent energy and the neutral limit Prandtl number. J. Adv. Model. Earth Syst. 2015, 7, 791–805. [Google Scholar] [CrossRef] [Green Version]
- Bodine, D.; Klein, P.M.; Arms, S.C.; Shapiro, A. Variability of surface air temperature over gently sloped terrain. J. Appl. Meteorol. Climatol. 2009, 48, 1117–1141. [Google Scholar] [CrossRef]
- Sheridan, P.F.; Vosper, S.B.; Brown, A.R. Characteristics of cold pools observed in narrow valleys and dependence on external conditions. Q. J. R. Meteorol. Soc. 2014, 140, 715–728. [Google Scholar] [CrossRef]
- De Wekker, S.F.J.; Whiteman, C.D. On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J. Appl. Meteorol. Climatol. 2006, 45, 813–820. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Leutwyler, D.; Fuhrer, O.; Lapillonne, X.; Lüthi, D.; Schär, C. Towards European-scale convection-resolving climate simulations with GPUs: A study with COSMO 4.19. Geosci. Model Dev. 2016, 9, 3393–3412. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos. 2014, 119, 7889–7907. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.E. Cramming more components onto integrated circuits. Electronics 1965, 38, 114–117. [Google Scholar] [CrossRef]
- Cuxart, J. When can a high-resolution simulation over complex terrain be called LES? Front. Earth Sci. 2015, 3, 87. [Google Scholar] [CrossRef]
- Sullivan, P.P.; Patton, E.G. The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci. 2011, 68, 2395–2415. [Google Scholar] [CrossRef]
- Hart, K.A.; Steenburgh, W.J.; Onton, D.J.; Siffert, A.J. An Evaluation of Mesoscale-Model-Based Model Output Statistics (MOS) during the 2002 Olympic and Paralympic Winter Games. Weather Forecast. 2004, 19, 200–218. [Google Scholar] [CrossRef] [Green Version]
- Billings, B.J.; Grubišić, V.; Borys, R.D. Maintenance of a mountain valley cold pool: A numerical study. Mon. Weather Rev. 2006, 134, 2266–2278. [Google Scholar] [CrossRef]
- Zängl, G. An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography. Mon. Weather Rev. 2002, 130, 1423–1432. [Google Scholar] [CrossRef]
- Zhong, S.; Chow, F.K. Meso- and fine-scale modeling over complex terrain: Parameterizations and applications. In Mountain Weather Research and Forecasting; Chow, F.K., De Wekker, S.F., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 591–653. ISBN 978-94-007-4097-6. [Google Scholar]
- Doyle, J.D.; Epifanio, C.C.; Persson, A.; Reinecke, P.A.; Zangl, G. Mesoscale modeling over complex terrain: Numerical and predictability perspectives. In Mountain Weather Research and Forecasting; Chow, F.K., De Wekker, S.F., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 531–589. ISBN 978-94-007-4097-6. [Google Scholar]
- Chow, F.K.; Schär, C.; Ban, N.; Lundquist, K.A.; Schlemmer, L.; Shi, X. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere 2018. in preparation. [Google Scholar]
- Hacker, J.; Draper, C.; Madaus, L. Challenges and opportunities for data assimilation in mountainous environments. Atmosphere 2018, 9, 127. [Google Scholar] [CrossRef]
- Couvreux, F.; Bazile, E.; Canut, G.; Seity, Y.; Lothon, M.; Lohou, F.; Guichard, F.; Nilsson, E. Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign. Atmos. Chem. Phys. 2016, 16, 8983–9002. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, R.; Silver, Z.; Zsedrovits, T.; Hocut, C.M.; Leo, L.S.; Di Sabatino, S.; Fernando, H.J.S. Assessment of planetary boundary-layer schemes in the Weather Research and Forecasting mesoscale model using MATERHORN field data. Bound. Layer Meteorol. 2016, 159, 589–609. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; Svensson, G.; Baas, P.; Basu, S.; Beare, B.; Beljaars, A.C.M.; Bosveld, F.C.; Cuxart, J.; Lindvall, J.; Steeneveld, G.J.; et al. Stable atmospheric boundary layers and diurnal cycles. Bull. Am. Meteorol. Soc. 2013, 94, 1691–1706. [Google Scholar] [CrossRef]
- Zheng, W.; Ek, M.; Mitchell, K.; Wei, H.; Meng, J. Improving the stable surface layer in the NCEP Global Forecast System. Mon. Weather Rev. 2017, 145, 3969–3987. [Google Scholar] [CrossRef]
- Lehner, M.; Whiteman, C.D.; Hoch, S.W.; Crosman, E.T.; Jeglum, M.E.; Cherukuru, N.W.; Calhoun, R.; Adler, B.; Kalthoff, N.; Rotunno, R.; et al. The METCRAX II field experiment—A study of downslope windstorm-type flows in Arizona’s Meteor Crater. Bull. Am. Meteorol. Soc. 2016, 97, 217–235. [Google Scholar] [CrossRef]
- Baklanov, A.A.; Grisogono, B.; Bornstein, R.; Mahrt, L.; Zilitinkevich, S.S.; Tayler, P.; Larsen, S.E.; Rotach, M.W.; Fernando, H.J.S. The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Am. Meteorol. Soc. 2011, 92, 123–128. [Google Scholar] [CrossRef]
- Fernando, H.J.S.; Pardyjak, E.R.; Di Sabatino, S.; Chow, F.K.; De Wekker, S.F.J.; Hoch, S.W.; Hacker, J.; Pace, J.C.; Pratt, T.; Pu, Z.; et al. The MATERHORN—Unraveling the intricacies of mountain weather. Bull. Am. Meteorol. Soc. 2015, 96, 1945–1967. [Google Scholar] [CrossRef]
- Rotach, M.W.; Stiperski, I.; Fuhrer, O.; Goger, B.; Gohm, A.; Obleitner, F.; Rau, G.; Sfyri, E.; Vergeiner, J. Investigating exchange processes over complex topography: The Innsbruck-Box (i-Box). Bull. Am. Meteorol. Soc. 2017, 98, 787–805. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Wyngaard, J.C. The Kansas and Minnesota experiments. Bound. Layer Meteorol. 1990, 50, 31–47. [Google Scholar] [CrossRef]
- Foster, C.S.; Crosman, E.T.; Horel, J.D. Simulaitons of a cold-air pool in Utah’s Salt Lake Valley: Sensitivity to land use and snow cover. Bound. Layer Meteorol. 2017, 164, 63–87. [Google Scholar] [CrossRef]
- Dutra, E.; Viterbo, P.; Miranda, P.M.A.; Balsamo, G. Complexity of snow schemes in a climate model and its impact on surface energy and hydrology. J. Hydrometeorol. 2012, 13, 521–538. [Google Scholar] [CrossRef]
- Banta, R.M.; Gannon, P.T. Influence of soil moisture on simulations of katabatic flow. Theor. Appl. Climatol. 1995, 52, 85–94. [Google Scholar] [CrossRef]
- Chow, F.K.; Weigel, A.P.; Street, R.L.; Rotach, M.W.; Xue, M. High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteorol. Climatol. 2006, 45, 63–86. [Google Scholar] [CrossRef]
- Daniels, M.H.; Chow, F.K.; Poulos, G.S. Effects of soil moisture initialization on simulations of atmospheric boundary layer evolution in Owens Valley. In Proceedings of the AMS 12th Conference on Mountain Meteorology, Santa Fe, NM, USA, 27 August–1 September 2006. [Google Scholar]
- Massey, J.D.; Steenburgh, W.J.; Knievel, J.C.; Cheng, W.Y.Y. Regional soil moisture biases and their influence on WRF model temperature forecasts over the Intermountain West. Weather Forecast. 2016, 31, 197–216. [Google Scholar] [CrossRef]
- Patton, E.G.; Sullivan, P.P.; Moeng, C.-H. The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci. 2005, 62, 2078–2097. [Google Scholar] [CrossRef]
- Wyngaard, J.C. Toward numerical modeling in the “terra incognita”. J. Atmos. Sci. 2004, 61, 1816–1826. [Google Scholar] [CrossRef]
- Zhou, B.; Simon, J.S.; Chow, F.K. The convective boundary layer in the terra incognita. J. Atmos. Sci. 2014, 71, 2545–2563. [Google Scholar] [CrossRef]
- Mahrer, Y. An improved approximation of the horizontal gradients in a terrain-following coordinate system. Mon. Weather Rev. 1984, 112, 918–922. [Google Scholar] [CrossRef]
- Mihailović, D.T.; Janjić, Z.I. Comparison of methods for reducing the error of the pressure gradient force in sigma coordinate models. Meteorol. Atmos. Phys. 1986, 35, 177–184. [Google Scholar] [CrossRef]
- Lundquist, K.A.; Chow, F.K.; Lundquist, J.K. An immersed boundary method for the Weather Research and Forecasting model. Mon. Weather Rev. 2010, 138, 796–817. [Google Scholar] [CrossRef]
- Lundquist, K.A.; Chow, F.K.; Lundquist, J.K. An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model. Mon. Weather Rev. 2012, 140, 3936–3955. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H. Large-eddy simulations of atmospheric flows over complex terrain using the immersed-boundary method in the Weather Research and Forecasting model. Bound. Layer Meteorol. 2017, 165, 421–445. [Google Scholar] [CrossRef]
- Arnold, D.; Morton, D.; Schicker, I.; Seibert, P.; Rotach, M.W.; Horvath, K.; Dudhia, J.; Satomura, T.; Muller, M.; Zangl, G.; et al. High Resolution Modelling in Complex Terrain. Report on the HiRCoT 2012 Workshop, Vienna, 21–23 February 2012; BOKU-Met: Vienna, Austria, 2012. [Google Scholar]
- Hauge, G.; Hole, L.R. Implementation of slope irradiance in Mesoscale Model version 5 and its effect on temperature and wind fields during the breakup of a temperature inversion. J. Geophys. Res. 2003, 108, 4058:1–4058:12. [Google Scholar] [CrossRef]
- Colette, A.; Chow, F.K.; Street, R.L. A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys. J. Appl. Meteorol. 2003, 42, 1255–1272. [Google Scholar] [CrossRef]
- Chen, Y.; Hall, A.; Liou, K.N. Application of three-dimensional solar radiative transfer to mountains. J. Geophys. Res. 2006, 111, DS1111:1–DS1111:13. [Google Scholar] [CrossRef]
- Manners, J.; Vosper, S.B.; Roberts, N. Radiative transfer over resolved topographic features for high-resolution weather prediction. Q. J. R. Meteorol. Soc. 2012, 138, 720–733. [Google Scholar] [CrossRef]
- Müller, M.D.; Scherer, D. A grid- and subgrid-scale radiation parameterization of topographic effects for mesoscale weather forecast models. Mon. Weather Rev. 2005, 133, 1431–1442. [Google Scholar] [CrossRef]
- Senkova, A.V.; Rontu, L.; Savijarvi, H. Parameterization of orographic effects on surface radiation in HIRLAM. Tellus 2007, 59A, 279–291. [Google Scholar] [CrossRef]
- Choi, H.-J.; Hong, S.-Y. An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res. Atmos. 2015, 120, 12445–12457. [Google Scholar] [CrossRef]
- Vosper, S.B. Mountain waves and wakes generated by South Georgia: Implications for drag parametrization. Q. J. R. Meteorol. Soc. 2015, 141, 2813–2827. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 1954, 24, 163–187. [Google Scholar]
- Nadeau, D.F.; Pardyjak, E.R.; Higgins, C.W.; Parlange, M.B. Similarity scaling over a steep Alpine slope. Bound. Layer Meteorol. 2013, 147, 401–419. [Google Scholar] [CrossRef]
- Grachev, A.A.; Leo, L.S.; Di Sabatino, S.; Fernando, H.J.S.; Pardyjak, E.R.; Fairall, C.W. Structure of turbulence in katabatic flows below and above the wind-speed maximum. Bound. Layer Meteorol. 2016, 159, 469–494. [Google Scholar] [CrossRef]
- Sfyri, E.; Rotach, M.W.; Stiperski, I.; Bosveld, F.C.; Lehner, M.; Obleitner, F. Scalar flux similarity in the layer near the surface over mountainous terrain. Bound. Layer Meteorol. 2018, in press. [Google Scholar] [CrossRef]
- de Franceschi, M.; Zardi, D.; Tagliazucca, M.; Tampieri, F. Analysis of second-order moments in the surface layer turbulence in an Alpine valley. Q. J. R. Meteorol. Soc. 2009, 135, 1750–1765. [Google Scholar] [CrossRef]
- Oncley, S.P.; Foken, T.; Vogt, R.; Kohsiek, W.; De Bruin, H.A.R.; Bernhofer, C.; Christen, A.; van Gorsel, E.; Grantz, D.; Feigenwinter, C.; et al. The Energy Balance Experiment EBEX-2000. Part I: Overview and energy balance. Bound. Layer Meteorol. 2007, 123, 1–28. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Mauder, M.; Desjardins, R.L.; Pattey, E.; Worth, D. An attempt to close the daytime surface energy balance using spatially-averaged flux measurements. Bound. Layer Meteorol. 2010, 136, 175–191. [Google Scholar] [CrossRef]
- Rotach, M.W.; Andretta, M.; Calanca, P.; Weigel, A.P.; Weiss, A. Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys. 2008, 56, 194–219. [Google Scholar] [CrossRef]
- Banta, R.M.; Shun, C.M.; Law, D.C.; Brown, W.; Reinking, R.F.; Hardesty, R.M.; Senff, C.J.; Brewer, W.A.; Post, M.J.; Darby, L.S. Observational techniques: Sampling the mountain atmosphere. In Mountain Weather Research and Forecasting; Chow, F.K., De Wekker, S.F., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 409–530. ISBN 978-94-007-4097-6. [Google Scholar]
- Emeis, S.; Kalthoff, N.; Adler, B.; Pardyjak, E.R.; Paci, A.; Junkermann, W. High-resolution observation of transport and exchange processes in mountainous terrain. Atmosphere 2018. submitted. [Google Scholar]
- Matzinger, N.; Andretta, M.; van Gorsel, E.; Vogt, R.; Ohmura, A.; Rotach, M.W. Surface radiation budget in an Alpine valley. Q. J. R. Meteorol. Soc. 2003, 129, 877–895. [Google Scholar] [CrossRef] [Green Version]
- Hoch, S.W.; Whiteman, C.D. Topographic effects on the surface radiation balance in and around Arizona’s Meteor Crater. J. Appl. Meteorol. Climatol. 2010, 49, 1114–1128. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Allwine, K.J.; Fritschen, L.J.; Orgill, M.M.; Simpson, J.R. Deep valley radiation and surface energy budget microclimates. Part II: Energy budget. J. Appl. Meteorol. 1989, 28, 427–437. [Google Scholar] [CrossRef]
- Rotach, M.W.; Zardi, D. On the boundary-layer structure over highly complex terrain: Key findings from MAP. Q. J. R. Meteorol. Soc. 2007, 133, 937–948. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, C.D.; Hoch, S.W.; Lehner, M.; Haiden, T. Nocturnal cold-air intrusions into a closed basin: Observational evidence and conceptual model. J. Appl. Meteorol. Climatol. 2010, 49, 1894–1905. [Google Scholar] [CrossRef]
- Dorninger, M.; Whiteman, C.D.; Bica, B.; Eisenbach, S.; Pospichal, B.; Steinacker, R. Meteorological events affecting cold-air pools in a small basin. J. Appl. Meteorol. Climatol. 2011, 50, 2223–2234. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Haiden, T.; Pospichal, B.; Eisenbach, S.; Steinacker, R. Minimum temperatures, diurnal temperature ranges and temperature inversions in limestone sinkholes of different sizes and shapes. J. Appl. Meteorol. 2004, 43, 1224–1236. [Google Scholar] [CrossRef]
- Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M.W. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech. 2015, 8, 3355–3367. [Google Scholar] [CrossRef] [Green Version]
- Young, J.S.; Whiteman, C.D. Laser ceilometer investigation of persistent wintertime cold-air pools in Utah’s Salt Lake Valley. J. Appl. Meteorol. Climatol. 2015, 54, 752–765. [Google Scholar] [CrossRef]
- Stiperski, I.; Rotach, M.W. On the measurement of turbulence over complex mountainous terrain. Bound. Layer Meteorol. 2016, 159, 91–121. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance: A Practical Guide to Measurements and Data Analysis; Springer: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-2351-1. [Google Scholar]
- Oldroyd, H.J.; Pardyjak, E.R.; Huwald, H.; Parlange, M.B. Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Bound. Layer Meteorol. 2016, 159, 539–565. [Google Scholar] [CrossRef]
Scale | Process | Momentum | Energy | Mass |
---|---|---|---|---|
Meso-α (mountain-range scale) | Mountain-plain circulation | [72] | [73] | [54,74] |
Meso-β (mountain-range scale) | Gravity waves | [3,30,75] | [76,77] | [78,79] |
Forced lifting | [80,81] | [82,83,84] | ||
Meso-γ (mountain/valley scale) | Valley winds | [52,58,85] | [49,85] | [52,86,87] |
Flow channeling | [88,89] | [86] | ||
Rotors/wave breaking | [61,90] | [91,92] | [91] | |
Boundary-layer gravity waves | [93,94,95] | |||
Micro-α (slope scale) | Slope winds | [58,96,97] | [31,34,69] | [44,98,99] |
Valley subsidence | [100,101] | [43,69,102] | [103,104] | |
Moist convection | [105,106] | [105,106] | [107,108,109] | |
≤ Micro-β (turbulent scale) | Turbulent transport | [110,111] | [69,112,113] | [101,114] |
Radiation | - | [58,115] | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehner, M.; Rotach, M.W. Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain. Atmosphere 2018, 9, 276. https://doi.org/10.3390/atmos9070276
Lehner M, Rotach MW. Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain. Atmosphere. 2018; 9(7):276. https://doi.org/10.3390/atmos9070276
Chicago/Turabian StyleLehner, Manuela, and Mathias W. Rotach. 2018. "Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain" Atmosphere 9, no. 7: 276. https://doi.org/10.3390/atmos9070276
APA StyleLehner, M., & Rotach, M. W. (2018). Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain. Atmosphere, 9(7), 276. https://doi.org/10.3390/atmos9070276