Modified Principal Component Analysis for Identifying Key Environmental Indicators and Application to a Large-Scale Tidal Flat Reclamation
Abstract
:1. Introduction
2. Methods and Materials
2.1. MPCA
- (i)
- Matrix of data divergence D = [dij](m×n)
- (ii)
- Matrix of pollution status P = [pij](m×n)
- (iii)
- Matrix of temporal variation T = [tij](m×n)
2.2. Application Area
2.3. Field Sampling
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yue, Q.; Zhao, M.; Yu, H.M.; Xu, W.; Ou, L. Total quantity control and intensive management system for reclamation in China. Ocean Coast. Manag. 2016, 120, 64–69. [Google Scholar] [CrossRef]
- Meng, W.Q.; Hua, B.B.; He, M.X.; Liu, B.Q.; Mo, X.Q.; Li, H.Y.; Wang, Z.L.; Zhang, Y. Temporal-spatial variations and driving factors analysis of coastal reclamation in China. Estuar. Coast. Shelf Sci. 2017, 191, 39–49. [Google Scholar] [CrossRef]
- Ma, Z.J.; Melville, D.S.; Liu, J.G.; Chen, Y.; Yang, H.Y.; Ren, W.W.; Zhang, Z.W.; Piersma, T.; Li, B. Rethinking China’s new great wall. Science 2014, 346, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Protecting and Conserving the North-East Atlantic and it’s resources (OSPAR). Assessment of the Environmental Impact of Land Reclamation, Biodiversity Series; Publication Number 368/2008; OSPAR Commission: London, UK, 2008; pp. 13–14. [Google Scholar]
- Angus, T.L.L. China’s greatest leap forward and the ones left behind: The twofold problem causing the rise in land disputes: Land reclamation and environmental degradation. Tulane Environ. Law J. 2008, 21, 341–390. [Google Scholar]
- Humood, A.N. The role of environmental impact assessment in protecting coastal and marine environments in rapidly developing islands: The case of Bahrain, Arabian Gulf. Ocean Coast. Manag. 2015, 104, 159–169. [Google Scholar]
- Lai, S.; Loke, L.H.L.; Hilton, M.J.; Boumac, T.J.; Todd, P.A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: A Singapore case study. Ocean Coast. Manag. 2015, 103, 78–85. [Google Scholar] [CrossRef]
- Magyar, N.; Hatvani, I.G.; Székely, I.K.; Herzig, A.; Dinkad, M.; Kovácsa, J. Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See. Ecol. Eng. 2013, 55, 82–92. [Google Scholar] [CrossRef]
- Pozo, C.; Ruíz-Femeniab, R.; Caballerob, J.; Guillén-Gosálbeza, J.; Jiméneza, L. On the use of Principal Component Analysis for reducing the number of environmental objectives in multi-objective optimization: Application to the design of chemical supply chains. Chem. Eng. Sci. 2012, 69, 146–158. [Google Scholar] [CrossRef]
- Pejman, A.H.; Nabi Bidhendi, G.R.; Karbassi, A.R.; Mehrdadi, N.; EsmaeiliBidhendi, M. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int. J. Environ. Sci. Technol. 2009, 6, 467–476. [Google Scholar] [CrossRef]
- Yang, J.S.; Yao, R.J. Evaluation of soil quality in reclaimed coastal regions in North Jiangsu Province. Chin. J. Eco-Agric. 2009, 17, 410–415. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Gao, P.; Zhang, J.B.; Jin, W.H. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil Tillage Res. 2013, 128, 137–148. [Google Scholar] [CrossRef]
- Berger, E.; Haase, P.; Kuemmerlen, M.; Leps, M.; Schafer, R.B.; Sundermann, A. Water quality variables and pollution sources shaping stream macroinvertebrate communities. Sci. Total Environ. 2017, 587, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Nkedi-Kizza, P.; Wu, Q.T.; Shinde, D.; Huang, C.H. Assessment of seasonal variations in surface water quality. Water Res. 2006, 40, 3800–3810. [Google Scholar] [CrossRef] [PubMed]
- González-Oreja, J.A.; Sáiz-Salinas, J.I. Exploring the relationships between abiotic variables and benthic community structure in a polluted estuarine system. Water Res. 1998, 32, 3799–3807. [Google Scholar] [CrossRef]
- Borja, A.; Muxika, I.; Franco, J. Long-term recovery of soft-bottom benthos following urban and industrial sewage treatment in the Nervión estuary (southern Bay of Biscay). Mar. Ecol. Prog. Ser. 2006, 313, 43–55. [Google Scholar] [CrossRef]
- Looi, L.J.; Aris, A.Z.; Johari, W.L.W.; Yusoffc, F.M.; Hashim, Z. Baseline metals pollution profile of tropical estuaries and coastal waters of the Straits of Malacca. Mar. Pollut. Bull. 2013, 74, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Udayakumar, P.; Abhilash, P.P.; Ouseph, P.P. Assessment of water quality using principal component analysis—A case study of the Mangalore coastal region, India. J. Environ. Sci. Eng. 2009, 51, 179–186. [Google Scholar] [PubMed]
- Iyer, C.S.; Sindhu, M.; Kulkarni, S.G.; Tambe, S.S.; Kulkarni, B.D. Statistical analysis of the physico-chemical data on the coastal water of Cochin. J. Environ. Monit. 2003, 5, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Wilbers, G.J.; Becker, M.; Nga, L.T.; Sebesvari, Z.; Renaud, F.G. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Sci. Total Environ. 2014, 485–486, 653–665. [Google Scholar] [CrossRef] [PubMed]
- AI-Mutairi, N.; Abahussain, A.; EI-Battay, A. Spatial and temporal characterizations of water quality in Kuwait Bay. Mar. Pollut. Bull. 2014, 83, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Ide, Y.; Sato, D.; Kench, P.S.; Kuwahara, Y.; Yokoki, H.; Kayanne, H. Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu. Chemosphere 2014, 95, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Gao, X.L. Integrated Assessment of Heavy Metal Pollution in the Surface Sediments of the Laizhou Bay and the Coastal Waters of the Zhangzi Island, China: Comparison among Typical Marine Sediment Quality Indices. PLoS ONE 2014, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, V.; Stanimirova, I.; Tsakovski, S. Multivariate statistical interpretation of coastal sediment monitoring data. Fresenius J. Anal. Chem. 2001, 370, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.D.; Moreira, I.T.A.; de Oliveira, O.M.C.; Rios, M.C.; Filho, W.A.C.S.; de Almeida, M.; de Carvalho, G.C. Distribution and ecotoxicology of bioavailable metals and As in surface sediments of Paraguacu estuary, Todosos Santos Bay, Brazil. Mar. Pollut. Bull. 2015, 9, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Young, P.C.; Chotai, A.; Beven, K.J. Data-based mechanistic modelling and the simplification of environmental systems. In Environment Modelling: Finding Simplicity in Complexity, 2nd ed.; Wainwright, J., Mulligan, M., Eds.; Wiley: Chichester, UK, 2004; pp. 371–388. ISBN 0-471-49617-0. [Google Scholar]
- Szekely, G.; Rizzo, M. Measuring and testing independence by correlation distances. Ann. Stat. 2007, 35, 2769–2794. [Google Scholar] [CrossRef]
- Andrews, S.S.; Mitchell, J.P.; Mancinelli, R.; Karlen, K.L.; Hartz, T.K.; Horwath, W.R.; Pettygrove, G.S.; Scow, K.M.; Munk, D.S. On-farm assessment of soil quality in California’s central valley. Agron. J. 2002, 94, 12–23. [Google Scholar] [CrossRef]
- Ding, X.R.; Kang, Y.Y.; Ge, X.P.; Li, Q.; Zhang, T.T. Tidal flat evolution analysis using remote sensing on Tiaozini flat of the radial sand ridges. J. Hohai Univ. (Nat. Sci.) 2011, 39, 231–236. [Google Scholar]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario; Ontario Ministry of the Environment and Energy: Toronto, ON, Canada, 1993; p. 3. Available online: http://www.itrcweb.org/contseds-bioavailability/References/guide_aquatic_sed93.pdf (accessed on 1 February 2011).
- Al-Farawati, R.; van den Berg, C.M.G. Metal-sulfide complexation in seawater. Mar. Chem. 1999, 63, 331–352. [Google Scholar] [CrossRef]
- De Baar, H.J.W.; Saager, P.M.; Notling, R.F.; van der Meer, J. Cadmium versus phosphate in the world ocean. Mar. Chem. 1994, 46, 261–281. [Google Scholar] [CrossRef]
- Lane, T.W.; Morel, F.M.M. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA 2000, 97, 4627–4631. [Google Scholar] [CrossRef] [PubMed]
- Kremling, K.; Streu, P. The behaviour of dissolved Cd, Co, Zn, and Pb in North Atlantic near-surface waters (30°N/60°W–60°N/2°W). Deep Sea Res. Part I Oceanogr. Res. Pap. 2001, 48, 2541–2567. [Google Scholar] [CrossRef]
- Xu, Y.; Feng, L.; Jeffrey, P.D.; Shi, Y.G.; Morel, F.M.M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 2008, 452, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Janssen, D.J.; Conway, T.M.; John, S.G.; Christian, J.R.; Kramer, D.I.; Pedersen, T.M.; Cullen, J.T. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. Proc. Natl. Acad. Sci. USA 2014, 111, 6888–6893. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.M.; Song, J.M.; Li, X.G.; Li, N.; Duan, L.Q. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea. Mar. Pollut. Bull. 2012, 64, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.M.; Lin, S. The carbon-sulfide-iron relationship and sulfate reduction rate in the East China Sea continental shelf sediments. Geochem. J. 1995, 29, 301–315. [Google Scholar] [CrossRef]
- Gao, X.L.; Li, P.M. Concentration and fractionation of trace metals in surface sediments of intertidal Bohai Bay, China. Mar. Pollut. Bull. 2012, 64, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.L.; Li, P.M.; Chen, C.T.A. Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results. Mar. Pollut. Bull. 2013, 72, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Gobas, F.A.P.C.; Branfireun, B.A.; Heyes, A. Environmental controls on the speciation and distribution of mercury in coastal sediments. Mar. Chem. 2006, 102, 111–123. [Google Scholar] [CrossRef]
- Hong, Y.N.; Geng, J.J.; Qiao, S.; Zhang, Y.Z.; Ding, L.L.; Wang, X.R.; Ren, H.Q. Phosphorus fractions and matrix-bound phosphine in coastal surface sediments of the Southwest Yellow Sea. J. Hazard. Mater. 2010, 181, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Bulletin of Marine Environmental Quality of Jiangsu Province. 2010. Available online: http://web.jsocean.cn:82/searchnews_details.html?action=2025 (accessed on 9 March 2011).
- Bulletin of Marine Environmental Quality of Jiangsu Province. 2011. Available online: http://web.jsocean.cn:82/searchnews_details.html?action=2026 (accessed on 18 January 2012).
- Bulletin of Marine Environmental Quality of Jiangsu Province. 2012. Available online: http://web.jsocean.cn:82/searchnews_details.html?action=2027 (accessed on 24 July 2013).
- Bulletin of Marine Environmental Quality of Jiangsu Province. 2013. Available online: http://web.jsocean.cn:82/searchnews_details.html?action=2028 (accessed on 11 April 2014).
- Suikkanen, S.; Laamanen, M.; Huttune, M. Long term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci. 2007, 71, 580–592. [Google Scholar] [CrossRef]
- Griffiths, J.R.; Hajdu, S.; Downing, A.S.; Hjerne, O.; Larsson, U.; Winder, M. Phytoplankton community interactions and environmental sensitivity in coastal and offshore habitats. OIKOS 2016, 125, 1134–1143. [Google Scholar] [CrossRef]
- Rodriguez-Villanueva, V.; Martinez-Lara, R.; Zamora, V.M. Polychaete community structure of the northwestern coast of Mexico: Patterns of abundance and distribution. Hydrobiologia 2003, 496, 385–399. [Google Scholar] [CrossRef]
- Silveira, C.B.; Vieira, R.P.; Cardoso, A.M.; Paranhos, R.; Albano, R.M.; Martins, O.B. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic ocean. PLoS ONE 2011, 6, e17789. [Google Scholar] [CrossRef] [PubMed]
- Lacharite, M.; Jorgensen, L.L.; Metaxas, A.; Lien, V.S.; Skjoldal, H.R. Delimiting oceanographic provinces to determine drivers of mesoscale patterns in benthic megafauna: A case study in the Barents Sea. Prog. Oceanogr. 2016, 146, 187–198. [Google Scholar] [CrossRef]
Category | Variable | Unit | Minimum | Maximum | Mean | SD 1 | CV (%) 2 | CSWQS (2nd Class) |
---|---|---|---|---|---|---|---|---|
Water variables | pH | 6.95 | 8.6 | 7.588 | 0.612 | 8.07 | 7.8–8.5 | |
DO | mg/L | 7.3 | 8.25 | 7.771 | 0.342 | 4.40 | >5 | |
COD | mg/L | 0.86 | 3.96 | 2.144 | 1.030 | 48.05 | ≤3 | |
DIN | mg/L | 0.418 | 1.008 | 0.747 | 0.186 | 24.97 | ≤0.30 | |
SRP | mg/L | 0.023 | 0.067 | 0.038 | 0.014 | 36.87 | ≤0.030 | |
PETRO | mg/L | BDL 3 | 0.0045 | 0.0023 | 0.00089 | 38.75 | ≤0.05 | |
Cd | μg/L | 0.085 | 0.7 | 0.23 | 0.16 | 72.97 | ≤5 | |
Hg | μg/L | 0.25 | 0.9 | 0.51 | 0.17 | 33.07 | ≤0.2 | |
Sediment variables | CMSQ (1st class) | |||||||
Sulphide | mg/kg | 13.1 | 61.7 | 28.34 | 17.255 | 60.89 | ≤300 | |
TOC | % | 0.5 | 1.27 | 0.977 | 0.265 | 27.08 | ≤2.0 | |
PETRO | mg/kg | 3.55 | 17.11 | 8.196 | 5.109 | 62.33 | ≤550 | |
TKN | mg/kg | 105.0 | 172.0 | 148.4 | 20.473 | 13.80 | ≤550 [30] | |
TP | mg/kg | 583.0 | 652.0 | 626.8 | 23.289 | 3.72 | ≤600 [30] | |
Cd | μg/g | 0.004 | 0.138 | 0.0652 | 0.059 | 91.23 | ≤0.5 | |
Hg | μg/g | 0.054 | 0.305 | 0.1706 | 0.080 | 46.90 | ≤0.2 | |
Phytoplan-kton Biodiver-sity | Shannon-Wiener index | 0.51 | 2.24 | 1.39 | 0.526 | 37.79 | NA 4 | |
Rmargalef | 0.43 | 0.98 | 0.64 | 0.184 | 28.62 | NA | ||
Pielou index | 0.18 | 0.69 | 0.47 | 0.182 | 38.26 | NA |
Category | Variable | Unit | Minimum | Maximum | Mean | SD | CV (%) | CSWQS (2nd Class) |
---|---|---|---|---|---|---|---|---|
Water variables | pH | 7.99 | 8.3 | 8.149 | 0.092 | 1.13 | 7.8–8.5 | |
DO | mg/L | 6.28 | 7.51 | 6.845 | 0.317 | 4.64 | >5 | |
COD | mg/L | 1.085 | 2.364 | 1.399 | 0.337 | 24.07 | ≤3 | |
DIN | mg/L | 0.154 | 0.545 | 0.279 | 0.127 | 45.48 | ≤0.30 | |
SRP | mg/L | 0.0008 | 0.01 | 0.003 | 0.003 | 101.59 | ≤0.030 | |
PETRO | mg/L | BDL | 0.034 | 0.012 | 0.011 | 89.85 | ≤0.05 | |
Cd | μg/L | 0.027 | 0.11 | 0.064 | 0.025 | 39.04 | ≤5 | |
Hg | μg/L | 0.019 | 0.085 | 0.038 | 0.017 | 46.31 | ≤0.2 | |
Sediment variables | CMSQ (1st class) | |||||||
Sulphide | mg/kg | 0.3 | 49.4 | 9.3 | 18.093 | 194.55 | ≤300 | |
TOC | % | 0.106 | 0.482 | 0.238 | 0.119 | 49.79 | ≤2.0 | |
PETRO | mg/kg | 6.661 | 26.529 | 12.722 | 6.168 | 48.48 | ≤550 | |
TKN | mg/kg | 50.0 | 112.0 | 81.70 | 21.799 | 26.68 | ≤550 [30] | |
TP | mg/kg | 383.0 | 591.0 | 532.10 | 57.875 | 10.88 | ≤600 [30] | |
Cd | μg/g | 0.054 | 0.067 | 0.061 | 0.004 | 6.5 | ≤0.2 | |
Hg | μg/g | 0.001 | 0.008 | 0.0034 | 0.002 | 63.33 | ≤0.5 | |
Phytoplan-kton Biodiver-sity | Shannon-Wiener index | 1.07 | 1.62 | 1.44 | 0.140 | 9.727 | NA | |
Rmargalef | 1.19 | 1.55 | 1.365 | 0.095 | 6.983 | NA | ||
Pielou index | 0.333 | 0.509 | 0.454 | 0.047 | 10.425 | NA |
Variable | pHW | DOW | CODW | DINW | SRPW | PETROW | CdW | HgW | TKNS | TPS | HgS | CdS | PETROS | SulphideS | TOCS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pHW | 1 | 0.747 ** | 0.475 | 0.918 ** | 0.402 | 0.412 | 0.723 ** | 0.735 ** | 0.563 * | 0.559 * | 0.496 | 0.576 * | 0.533 * | 0.428 | 0.496 |
DOW | 1 | 0.590 * | 0.826 ** | 0.448 | 0.411 | 0.682 ** | 0.840 ** | 0.544 * | 0.675 * | 0.437 | 0.438 | 0.572 * | 0.610 * | 0.538 * | |
CODW | 1 | 0.490 | 0.491 | 0.315 | 0.602 * | 0.527 * | 0.476 | 0.617 * | 0.559 * | 0.448 | 0.450 | 0.687 ** | 0.600 * | ||
DINW | 1 | 0.373 | 0.364 | 0.421 | 0.625 * | 0.517 * | 0.638 * | 0.473 | 0.472 | 0.337 | 0.374 | 0.495 | |||
SRPW | 1 | 0.488 | 0.735 ** | 0.390 | 0.477 | 0.498 | 0.457 | 0.468 | 0.522 * | 0.728 ** | 0.724 ** | ||||
PETROW | 1 | 0.488 | 0.403 | 0.593 * | 0.534 * | 0.500 | 0.618 * | 0.594 * | 0.378 | 0.497 | |||||
CdW | 1 | 0.719 ** | 0.602 * | 0.489 | 0.441 | 0.733 ** | 0.515 * | 0.822 ** | 0.581 * | ||||||
HgW | 1 | 0.560 * | 0.503 | 0.452 | 0.505 | 0.680 * | 0.711 ** | 0.533 * | |||||||
TKNS | 1 | 0.549 * | 0.552 * | 0.464 | 0.608 * | 0.542 * | 0.470 | ||||||||
TPS | 1 | 0.466 | 0.520 * | 0.514 | 0.399 | 0.484 | |||||||||
HgS | 1 | 0.561 * | 0.466 | 0.489 | 0.780 ** | ||||||||||
CdS | 1 | 0.511 | 0.426 | 0.477 | |||||||||||
PETROS | 1 | 0.466 | 0.441 | ||||||||||||
SulphideS | 1 | 0.805 ** | |||||||||||||
TOCS | 1 | ||||||||||||||
Sum of dCor | 9.063 | 9.358 | 8.327 | 8.323 | 8.201 | 7.595 | 9.553 | 9.183 | 8.517 | 8.445 | 8.129 | 8.217 | 8.209 | 8.865 | 8.921 |
Component | PC1 | PC2 | PC3 | PC4 | Cumulative Extraction Rate of the First Four PCs |
Eigenvalue | 8.628 | 1.371 | 1.085 | 0.871 | |
Percent (%) | 57.52 | 9.14 | 7.24 | 5.81 | |
Cumulative percent (%) | 57.52 | 66.66 | 73.90 | 79.71 | |
Variables | Eigenvectors | ||||
pHW | 0.273 | −0.399 | −0.025 | −0.006 | 87.82% |
DOW | 0.283 | −0.325 | −0.207 | −0.075 | 86.39% |
CODW | 0.250 | 0.091 | −0.259 | 0.235 | 83.28% |
DINW | 0.251 | −0.479 | −0.074 | 0.300 | 91.08% |
SRPW | 0.245 | 0.390 | −0.085 | −0.058 | 79.59% |
PETROW | 0.224 | 0.143 | 0.574 | −0.053 | 88.93% |
CdW | 0.288 | 0.129 | −0.152 | −0.365 | 84.78% |
HgW | 0.278 | −0.207 | −0.188 | −0.323 | 78.17% |
TKNS | 0.254 | −0.003 | 0.236 | −0.092 | 76.16% |
TPS | 0.252 | −0.161 | 0.163 | 0.225 | 81.22% |
HgS | 0.242 | 0.177 | 0.154 | 0.517 | 81.55% |
CdS | 0.245 | 0.052 | 0.332 | −0.064 | 86.44% |
PETROS | 0.245 | 0.025 | 0.286 | −0.354 | 73.82% |
SulphideS | 0.268 | 0.323 | −0.406 | −0.152 | 92.14% |
TOCS | 0.267 | 0.316 | −0.162 | 0.355 | 80.74% |
Period | Parameter | Rmargalef | Shannon-Wiener Index | Pielou Index |
---|---|---|---|---|
pre-Phase I | R2 | 0.994 | 0.912 | 0.957 |
Standard error | 0.023 | 0.128 | 0.036 | |
Significance | <0.0001 | 0.011 | 0.002 | |
post-Phase I | R2 | 0.996 | 0.918 | 0.938 |
Standard error | 0.0089 | 0.048 | 0.014 | |
Significance | <0.0001 | 0.003 | 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, K.; Liu, W.; She, Y.; Hua, Z.; Tan, M.; Liu, X.; Gu, L.; Jia, Y. Modified Principal Component Analysis for Identifying Key Environmental Indicators and Application to a Large-Scale Tidal Flat Reclamation. Water 2018, 10, 69. https://doi.org/10.3390/w10010069
Chu K, Liu W, She Y, Hua Z, Tan M, Liu X, Gu L, Jia Y. Modified Principal Component Analysis for Identifying Key Environmental Indicators and Application to a Large-Scale Tidal Flat Reclamation. Water. 2018; 10(1):69. https://doi.org/10.3390/w10010069
Chicago/Turabian StyleChu, Kejian, Wenjuan Liu, Yuntong She, Zulin Hua, Min Tan, Xiaodong Liu, Li Gu, and Yongzhi Jia. 2018. "Modified Principal Component Analysis for Identifying Key Environmental Indicators and Application to a Large-Scale Tidal Flat Reclamation" Water 10, no. 1: 69. https://doi.org/10.3390/w10010069
APA StyleChu, K., Liu, W., She, Y., Hua, Z., Tan, M., Liu, X., Gu, L., & Jia, Y. (2018). Modified Principal Component Analysis for Identifying Key Environmental Indicators and Application to a Large-Scale Tidal Flat Reclamation. Water, 10(1), 69. https://doi.org/10.3390/w10010069