Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. Ice Breakup and Freeze up Dates
2.1.2. Historical Meteorological and Large-Scale Climate Oscillation Data
2.1.3. Projected Climate Data
2.2. Data Analyses
2.2.1. Trends in Lake Ice Phenology
2.2.2. Drivers of the Timing of Lake Ice Breakup and Freeze up
2.2.3. Projections in Lake Ice Phenology
3. Results
3.1. Trends in Lake Ice Phenology
3.2. Drivers of the Timing of Lake Ice Breakup and Freeze up
3.3. Forecasted Lake Ice Loss
4. Discussion
4.1. Trends in Lake Ice Phenology
4.2. Drivers of the Timing of Lake Ice Breakup and Freeze up
4.3. Forecasted Lake Ice Loss
4.4. Implications for Losing Lake Ice
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jansen, E.; Overpeck, J.; Briffa, K.R.; Duplessy, J.-C.; Joos, F.; Masson-Delmotte, V.; Olago, D.; Otto-Bliesner, B.; Peltier, W.R.; Rahmstorf, S.; et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 433–497. [Google Scholar]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Jensen, O.P.; Benson, B.J.; Magnuson, J.J.; Card, V.M.; Futter, M.N.; Soranno, P.A.; Stewart, K.M. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol. Oceanogr. 2007, 52, 2013–2026. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007, 34, L06604. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A. Warmer winters: Are planktonic algal populations in Sweden’s largest lakes affected? AMBIO A J. Hum. Environ. 2001, 30, 565–571. [Google Scholar] [CrossRef]
- Guzzo, M.M.; Blanchfield, P.J.; Rennie, M.D. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator. Proc. Natl. Acad. Sci. USA 2017, 114, 9912–9917. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, P.W.; Peterson, R.O.; Vucetich, L.M.; Adams, J.R.; Vucetich, J.A. Genetic rescue in Isle Royale wolves: Genetic analysis and the collapse of the population. Conserv. Genet. 2014, 15, 1111–1121. [Google Scholar] [CrossRef]
- Sánchez-López, G.; Hernández, A.; Pla-Rabes, S.; Toro, M.; Granados, I.; Sigró, J.; Trigo, R.M.; Rubio-Inglés, M.J.; Camarero, L.; Valero-Garcés, B.; et al. The effects of the NAO on the ice phenology of Spanish alpine lakes. Clim. Chang. 2015, 130, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Wang, J.; Sellinger, C.; Clites, A.; Assel, R. Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO. J. Geophys. Res. Ocean 2012, 117, C03002. [Google Scholar] [CrossRef]
- George, D.G. The Impact of the North Atlantic Oscillation on the development of ice on Lake Windermere. Clim. Chang. 2007, 81, 455–468. [Google Scholar] [CrossRef]
- Gebre, S.; Boissy, T.; Alfredsen, K. Sensitivity of lake ice regimes to climate change in the Nordic region. Cryosphere Dicuss 2014, 8, 1589–1605. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, R.N.; Bravo, H.R.; Magnuson, J.J.; Hyzer, W.G.; Benson, B.J. Coherence between lake ice cover, local climate and teleconnections (Lake Mendota, Wisconsin). J. Hydrol. 2009, 374, 282–293. [Google Scholar] [CrossRef]
- Sharma, S.; Magnuson, J.J.; Mendoza, G.; Carpenter, S.R. Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905–2004. Clim. Chang. 2013, 118, 857–870. [Google Scholar] [CrossRef]
- Yao, H.; Rusak, J.A.; Paterson, A.M.; Somers, K.M.; Mackay, M.; Girard, R.; Ingram, R.; McConnell, C. The interplay of local and regional factors in generating temporal changes in the ice phenology of Dickie Lake, south-central Ontario, Canada. Inland Waters 2013, 3, 1–14. [Google Scholar] [CrossRef]
- Sharma, S.; Magnuson, J.J. Oscillatory dynamics do not mask linear trends in the timing of ice breakup for Northern Hemisphere lakes from 1855 to 2004. Clim. Chang. 2014, 124, 835–847. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Meili, M.; Livingstone, D.M. Nonlinear temperature response of lake ice breakup. Geophys. Res. Lett. 2004, 31, L07203. [Google Scholar] [CrossRef]
- Soja, A.-M.; Kutics, K.; Maracek, K.; Molnár, G.; Soja, G. Changes in ice phenology characteristics of two Central European steppe lakes from 1926 to 2012—Influences of local weather and large scale oscillation patterns. Clim. Chang. 2014, 126, 119–133. [Google Scholar] [CrossRef]
- Palecki, M.A.; Barry, R.G.; Palecki, M.A.; Barry, R.G. Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: A case study for Finland. J. Clim. Appl. Meteorol. 1986, 25, 893–902. [Google Scholar] [CrossRef]
- Assel, R.A.; Robertson, D.M. Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records. Limnol. Oceanogr. 1995, 40, 165–176. [Google Scholar] [CrossRef]
- Vavrus, S.J.; Wynne, R.H.; Foley, J.A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol. Oceanogr. 1996, 41, 822–831. [Google Scholar] [CrossRef]
- Livingstone, D.M. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Clim. Chang. 1997, 37, 407–439. [Google Scholar] [CrossRef]
- Williams, G.P. Predicting the date of lake ice breakup. Water Resour. Res. 1971, 7, 323–333. [Google Scholar] [CrossRef]
- Jakkila, J.; Leppäranta, M.; Kawamura, T.; Shirasawa, K.; Salonen, K. Radiation transfer and heat budget during the ice season in Lake Pääjärvi, Finland. Aquat. Ecol. 2009, 43, 681–692. [Google Scholar] [CrossRef]
- Anderson, W.L.; Robertson, D.M.; Magnuson, J.J. Evidence of recent warming and El Nino-related variations in ice breakup of Wisconsin Lakes. Limnol. Oceanogr. 1996, 41, 815–821. [Google Scholar] [CrossRef]
- Livingstone, D.M. Large-scale climatic forcing detected in historical observations of lake ice break-up. Int. Ver. Theor. Angew. Limnol. Verh. 2001, 27, 2775–2783. [Google Scholar] [CrossRef]
- Robertson, D.M.; Wynne, R.H.; Change, W.Y.B. Influence of El Nino on lake and river ice cover in the Northern Hemisphere from 1900 to 1995. Verh. Int. Ver. Limnol. 2000, 27, 2784–2788. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Prowse, T.D.; Duguay, C.R.; Lacroix, M.P. Impacts of large-scale teleconnections on freshwater-ice break/freeze-up dates over Canada. J. Hydrol. 2006, 330, 340–353. [Google Scholar] [CrossRef]
- Mudelsee, M. A proxy record of winter temperatures since 1836 from ice freeze-up/breakup in lake Näsijärvi, Finland. Clim. Dyn. 2012, 38, 1413–1420. [Google Scholar] [CrossRef]
- Fu, C.; Yao, H. Trends of ice breakup date in south-central Ontario. J. Geophys. Res. Atmos. 2015, 120, 9220–9236. [Google Scholar] [CrossRef]
- Yoo, J.; D’Odorico, P. Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: The effect of the North Atlantic Oscillation. J. Hydrol. 2002, 268, 100–112. [Google Scholar] [CrossRef]
- Blenckner, T.; Adrian, R.; Livingstone, D.M.; Jennings, E.; Weyhenmeyer, G.A.; George, D.G.; Jankowski, T.; Järvinen, M.; Aonghusa, C.N.; Nõges, T.; et al. Large-scale climatic signatures in lakes across Europe: A meta-analysis. Glob. Chang. Biol. 2007, 13, 1314–1326. [Google Scholar] [CrossRef]
- Crossman, J.; Eimers, M.C.; Kerr, J.G.; Yao, H. Sensitivity of physical lake processes to climate change within a large Precambrian Shield catchment. Hydrol. Process. 2016, 30, 4353–4366. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H. Effects of changing climate on ice cover in three morphometrically different lakes. Hydrol. Process. 2017, 31, 308–323. [Google Scholar] [CrossRef]
- Magnuson, J.; Carpenter, S.; Stanley, E. North Temperate Lakes LTER: Ice Duration-Trout Lake Area 1981—Current. Available online: http://dx.doi.org/10.6073/pasta/48f12ec9c24e5b8fef692b2bb7aaa5ad (accessed on 1 January 2017).
- Robertson, D.; Magnuson, J.; Carpenter, S.; Stanley, E. North Temperate Lakes LTER Morphometry and Hypsometry Data for Core Study Lake. Available online: http://dx.doi.org/10.6073/pasta/1d15f38aaf14110714add6230ef78bd8 (accessed on 1 January 2017).
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Beaumont, L.J.; Hughes, L.; Pitman, A.J. Why is the choice of future climate scenarios for species distribution modelling important? Ecol. Lett. 2008, 11, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2017; Available online: http://www.R-project.org (accessed on 1 January 2018).
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A; Springer: Dordrecht, The Netherlands, 1992; pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Duguay, C.R.; Prowse, T.D.; Bonsal, B.R.; Brown, R.D.; Lacroix, M.P.; Ménard, P. Recent trends in Canadian lake ice cover. Hydrol. Process. 2006, 20, 781–801. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Forward selection of explanatory variables. Ecology 2008, 89, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Assel, R.; Herche, L. Coherence of long-term lake ice records. Verh. Int. Ver. Limnol. 2000, 27, 2789–2792. [Google Scholar] [CrossRef]
- Efremova, T.V.; Pal’shin, N.I. Ice phenomena terms on the water bodies of Northwestern Russia. Russ. Meteorol. Hydrol. 2011, 36, 559–565. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95364-9. [Google Scholar]
- Hodgkins, G.A. The importance of record length in estimating the magnitude of climatic changes: An example using 175 years of lake ice-out dates in New England. Clim. Chang. 2013, 119, 705–718. [Google Scholar] [CrossRef]
- Robertson, D.M.; Ragotzkie, R.A.; Magnuson, J.J. Lake ice records used to detect historical and future climatic changes. Clim. Chang. 1992, 21, 407–427. [Google Scholar] [CrossRef]
- Leppäranta, M. Modelling the formation and decay of lake ice. In The Impact of Climate Change on European Lakes; Springer: Dordrecht, The Netherlands, 2010; pp. 63–83. [Google Scholar]
- Shuter, B.J.; Minns, C.K.; Fung, S.R. Empirical models for forecasting changes in the phenology of ice cover for Canadian lakes. Can. J. Fish. Aquat. Sci. 2013, 70, 982–991. [Google Scholar] [CrossRef]
- Lei, R.; Leppäranta, M.; Cheng, B.; Heil, P.; Li, Z. Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008. Clim. Chang. 2012, 115, 725–739. [Google Scholar] [CrossRef]
- Livingstone, D.M. Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and to the North Atlantic Oscillation. Limnol. Oceanogr. 1999, 44, 1486–1497. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. North American Precipitation and Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO). Mon. Weather Rev. 1986, 114, 2352–2362. [Google Scholar] [CrossRef]
- George, D.G.; Jarvinen, M.; Arvola, L. The influence of the North Atlantic Oscillation on the winter characteristics of Windermere (UK) and Paajarvi (Finland). Boreal Environ. Res. 2004, 9, 389–400. [Google Scholar]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Kenawy, A.; Beniston, M. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Glob. Planet. Chang. 2011, 77, 62–76. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Korhonen, J. Long-term changes in lake ice cover in Finland. Nord. Hydrol. 2006, 37, 347–363. [Google Scholar] [CrossRef]
- Williams, G.; Layman, K.L.; Stefan, H.G. Dependence of lake ice covers on climatic, geographic and bathymetric variables. Cold Reg. Sci. Technol. 2004, 40, 145–164. [Google Scholar] [CrossRef]
- Williams, S.G.; Stefan, H.G. Modeling of lake ice characteristics in North America Using climate, geography, and lake bathymetry. J. Cold Reg. Eng. 2006, 20, 140–167. [Google Scholar] [CrossRef]
- Yao, H.; Samal, N.R.; Joehnk, K.D.; Fang, X.; Bruce, L.C.; Pierson, D.C.; Rusak, J.A.; James, A. Comparing ice and temperature simulations by four dynamic lake models in Harp Lake: Past performance and future predictions. Hydrol. Process. 2014, 28, 4587–4601. [Google Scholar] [CrossRef]
- Ruhland, K.; Paterson, A.M.; Smol, J.P. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob. Chang. Biol. 2008, 14, 2740–2754. [Google Scholar] [CrossRef]
- Preston, N.D.; Rusak, J.A. Homage to Hutchinson: Does inter-annual climate variability affect zooplankton density and diversity? Hydrobiologia 2010, 653, 165–177. [Google Scholar] [CrossRef]
- Winder, M.; Schindler, D.E. Climatic effects on the phenology of lake processes. Glob. Chang. Biol. 2004, 10, 1844–1856. [Google Scholar] [CrossRef]
- Shuter, B.J.; Finstad, A.G.; Helland, I.P.; Zweimüller, I.; Hölker, F. The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change. Aquat. Sci. 2012, 74, 637–657. [Google Scholar] [CrossRef]
- Scott, D.; Dawson, J.; Jones, B. Climate change vulnerability of the US Northeast winter recreation-tourism sector. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 577–596. [Google Scholar] [CrossRef]
- Damyanov, N.N.; Damon Matthews, H.; Mysak, L.A. Observed decreases in the Canadian outdoor skating season due to recent winter warming. Environ. Res. Lett. 2012, 7, 14028. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Lathrop, R.C. Lake Ice: Winter, Beauty, Value, Changes and a Threatened Future. LAKELINE. 2014, pp. 18–27. Available online: http://z0ku333mvy924cayk1kta4r1-wpengine.netdna-ssl.com/wp-content/uploads/LakeLine/34-4/Articles/34-4-7.pdf (accessed on 1 January 2018).
- Prowse, T.; Alfredsen, K.; Beltaos, S.; Bonsal, B.R.; Bowden, W.B.; Duguay, C.R.; Korhola, A.; McNamara, J.; Vincent, W.F.; Vuglinsky, V.; et al. Effects of changes in Arctic lake and river ice. Ambio 2011, 40, 63–74. [Google Scholar] [CrossRef]
- Vincent, W.F.; Laurion, I.; Pienitz, R.; Walter Anthony, K.M. Climate impacts on Arctic lake ecosystems. In Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies; Goldman, C.R., Kumagai, M., Robarts, R.D., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 27–42. ISBN 9781118470596. [Google Scholar]
Region | Lake | Latitude (°) | Longitude (°) | Elevation (m) | Surface Area (km2) | Mean Depth (m) | Maximum Depth (m) |
---|---|---|---|---|---|---|---|
Wisconsin | Allequash Lake | 46.04 | −89.62 | 494 | 1.64 | 2.9 | 8.0 |
Wisconsin | Big Muskellunge Lake | 46.02 | −89.61 | 500 | 3.63 | 7.5 | 21.3 |
Wisconsin | Crystal Bog | 46.01 | −89.61 | 503 | 0.01 | 1.7 | 2.5 |
Wisconsin | Crystal Lake | 46.00 | −89.61 | 502 | 0.38 | 10.4 | 20.4 |
Wisconsin | Sparkling Lake | 46.01 | −89.70 | 495 | 0.64 | 10.9 | 20.0 |
Wisconsin | Trout Bog | 46.04 | −89.69 | 499 | 0.01 | 5.6 | 7.9 |
Wisconsin | Trout Lake | 46.03 | −89.67 | 492 | 15.65 | 14.6 | 35.7 |
Ontario | Grandview Lake | 45.20 | −79.05 | 335 | 0.74 | 10.0 | 28.0 |
Ontario | Lake 239 (Rawson Lake) | 49.66 | −93.72 | 387 | 0.54 | 10.5 | 30.4 |
Climate Variable | Source | Length of Record | Scale |
---|---|---|---|
Total Sunspot Number (SS) | Sunspot Index and Long-term Solar Observations (SILSO) | 1700–2015 | Annual |
http://www.sidc.be/silso/ | |||
North Atlantic Oscillation Index (NAO) | National Center for Atmospheric Research (NCAR) | 1865–2015 | Annual |
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based | |||
El Nino Southern Oscillation (ENSO)-(SOI) | National Climate Center, Australia (Bureau of Meteorology) | 1876–2016 | Monthly |
http://www.bom.gov.au/climate/enso/#tabs=SOI | |||
Quasi-Biennial Oscillation Index (QBO) | National Oceanic and Atmospheric Administration (NOAA) | 1948–2016 | Monthly |
http://www.esrl.noaa.gov/psd/data/climateindices/list/ | |||
Arctic Oscillation (AO) | National Oceanic and Atmospheric Administration (NOAA) | 1950–2016 | Monthly |
http://www.esrl.noaa.gov/psd/data/climateindices/list/ | |||
Local Air Temperature and Precipitation | University of East Anglia’s Climatic Research Unit (CRU) | 1901–2015 | Monthly |
https://crudata.uea.ac.uk/cru/data/hrg/ |
Response Variable | Region | Lake | Model Equation 1 | R2adj | AIC | p-Value |
---|---|---|---|---|---|---|
Break-up Day of Year | All | All lakes | DOYb = 99.28 − 2.79 (MarAprTemp) − 1.13 (WinTemp) + 0.06 (WinPrecip) | 0.91 | 1643.22 | <0.001 |
Freeze-up Day of Year | Wisconsin | Allequash Lake | DOYf = 344.90 + 2.85 (NovTemp) | 0.60 | 226.85 | <0.001 |
Freeze-up Day of Year | Wisconsin | Big Muskellunge Lake | DOYf = 344.11 + 3.42 (NovTemp) | 0.70 | 223.60 | <0.001 |
Freeze-up Day of Year | Wisconsin | Crystal Bog | DOYf = 327.14 + 2.75 (NovTemp) | 0.63 | 220.52 | <0.001 |
Freeze-up Day of Year | Wisconsin | Crystal Lake | DOYf = 343.63 +3.06 (NovTemp) | 0.69 | 218.02 | <0.001 |
Freeze-up Day of Year | Wisconsin | Sparkling Lake | DOYf = 345.66 + 2.88 (NovTemp) | 0.58 | 230.42 | <0.001 |
Freeze-up Day of Year | Wisconsin | Trout Bog | DOYf = 328.31 + 2.65 (NovTemp) | 0.66 | 212.26 | <0.001 |
Freeze-up Day of Year | Wisconsin | Trout Lake | DOYf = 352.61 + 3.24 (NovTemp) | 0.61 | 233.86 | <0.001 |
Freeze-up Day of Year | Ontario | Grandview Lake | DOYf = 338.57 + 3.22 (NovTemp) | 0.39 | 242.32 | <0.001 |
Freeze-up Day of Year | Ontario | Lake 239 | DOYf = 308.67 + 3.93 (FallTemp) | 0.63 | 209.38 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hewitt, B.A.; Lopez, L.S.; Gaibisels, K.M.; Murdoch, A.; Higgins, S.N.; Magnuson, J.J.; Paterson, A.M.; Rusak, J.A.; Yao, H.; Sharma, S. Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region. Water 2018, 10, 70. https://doi.org/10.3390/w10010070
Hewitt BA, Lopez LS, Gaibisels KM, Murdoch A, Higgins SN, Magnuson JJ, Paterson AM, Rusak JA, Yao H, Sharma S. Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region. Water. 2018; 10(1):70. https://doi.org/10.3390/w10010070
Chicago/Turabian StyleHewitt, Bailey A., Lianna S. Lopez, Katrina M. Gaibisels, Alyssa Murdoch, Scott N. Higgins, John J. Magnuson, Andrew M. Paterson, James A. Rusak, Huaxia Yao, and Sapna Sharma. 2018. "Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region" Water 10, no. 1: 70. https://doi.org/10.3390/w10010070
APA StyleHewitt, B. A., Lopez, L. S., Gaibisels, K. M., Murdoch, A., Higgins, S. N., Magnuson, J. J., Paterson, A. M., Rusak, J. A., Yao, H., & Sharma, S. (2018). Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region. Water, 10(1), 70. https://doi.org/10.3390/w10010070