Climate Warming and Drought in the Bialowieza Forest from 1950–2015 and Their Impact on the Dieback of Norway Spruce Stands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Data
2.2. Drought Indices
2.2.1. Standardized Precipitation Index—SPI
- −0.50 < SPI < −1.49—Moderate drought
- −1.50 < SPI < −1.99—Severe drought
- SPI ≤ −2.00—Extreme drought.
2.2.2. Palmer Drought Severity Index (PDSI)
- 0.49 < PDSI < −0.49—Near normal
- −0.50 < PDSI < −0.99—Incipient drought
- −1.00 < PDSI < −1.99—Mild drought
- −2.00 < PDSI < −2.99—Moderate drought
- −3.00 < PDSI < −3.99—Severe drought
- PDSI < −4.00—Extreme drought.
2.2.3. Climatic Water Balance (CWB)
- 0 mm < CWB < −49.9 mm—Moderate drought
- −50 mm < CWB < −99.9 mm—Severe drought
- CWB > −100 mm—Extreme drought.
2.2.4. Soil Water Storage Deficit (SWSDef.)
- SWS at SWP = −0.01 MPa—the upper limit of the amount of water that can be retained in the soil to a depth of 60 cm, above this value, water flows out of the profile.
- SWS at SWP = −1.5 MPa—the lower limit of the amount of water that can be found in the soil to a depth of 60 cm under natural conditions.
- -
- leaf area index and the ground cover of a spruce stand were determined based on hemispheric photographs and HemiView software version 2.1 SR1 (Delta-T Devices Ltd., Burwell, Cambridge, UK);
- -
- type of soil—Eutric Cambisols—40% of spruce tree stands in Bialowieza Forest grow in a mixed broadleaved-coniferous forest under fresh soil moisture regime and 63% of this habitat is developed on Eutric Cambisols;
- -
- pF curve—the curve of water retention of Eutric Cambisol soil was determined in the laboratory. Based on the pF curve, the boundary values of soil water storage to a depth of 60 cm were calculated as follows: at SWP = −0.01 MPa—field capacity (FC) SWS = 169.5 mm; at SWP = −0.5 MPa—early wilting point (EWP) SWS = 95.8 mm; and at SWP = −1.5 MPa—permanent wilting point (PWP) SWS = 86.6 mm. A 60-cm depth was chosen due to the depth of the spruce’s root system and the level of capillary rise in the soil. Spruce has a shallow root system, reaching a depth of approximately 40 cm in the soil [24].
2.3. Volume of Wood Cut
3. Results
3.1. Air Temperature
3.2. Drought Indices
3.2.1. Palmer Drought Severity Index (PDSI)
3.2.2. Standardized Precipitation Index (SPI)
3.2.3. Climatic Water Balance (CWB)
3.2.4. Soil Water Storage Deficit (SWS at SWP ≥ −1.5 MPa)
3.2.5. Droughts Indicated by at Least Two Indices
3.3. Volume of Wood Cut
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boczoń, A. Characteristics of thermal and pluvial conditions in the Białowieża Primeval Forest between 1950 and 2003. For. Res. Pap. 2006, 1, 57–72. (In Polish) [Google Scholar]
- Boczoń, A. Groundwater in the Bialowieza Primeval Forest in the dry year 2000. Sylwan 2002, 7, 93–105. (In Polish) [Google Scholar]
- Boczoń, A.; Kowalska, A.; Dudzińska, M.; Wróbel, M. Drought in Polish Forests in 2015. Pol. J. Environ. Stud. 2016, 25, 1857–1862. [Google Scholar] [CrossRef] [Green Version]
- Grodzki, W. Mass outbreaks of the spruce bark beetle Ips typographus in the context of the controversies around the Białowieża Primeval Forest. For. Res. Pap. 2016, 77, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Hilszczanski, J.; Starzyk, J.R. Is it possible and necessary to control European spruce bark beetle Ips typographus (L.) outbreak in the Białowieża Forest? For. Res. Pap. 2017, 78, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Rammer, W.; Jäger, D.; Lexer, M.J. Impact of bark beetle (Ipstypographus L.) disturbance on timber production and carbon sequestration indifferent management strategies under climate change. For. Ecol. Manag. 2008, 256, 209–220. [Google Scholar] [CrossRef]
- Zweifel, R.; Rigling, A.; Dobbertin, M. Species-specific stomatal response of trees to drought—A link to vegetation dynamics? J. Veg. Sci. 2009, 20, 442–454. [Google Scholar] [CrossRef]
- Lévesque, M.; Saurer, M.; Siegwolf, R.; Eilmann, B.; Brang, P.; Bugmann, H.; Rigling, A. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Chang. Biol. 2013, 19, 3184–3199. [Google Scholar] [CrossRef] [PubMed]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. European drought climatologies and trends based on a multi-indicator approach. Glob. Planet. Chang. 2015, 127, 50–57. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Allen, C.; Macalady, A.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.; Hogg, E.; et al. A global overview of drought and heat-Induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Birdsey, R.; Pan, Y. Ecology: Drought and dead trees. Nat. Clim. Chang. 2011, 1, 444–445. [Google Scholar] [CrossRef]
- Stereńczak, K.; Kraszewski, B.; Mielcarek, M.; Piasecka, Z. Inventory of standing dead trees in the surroundings of communication routes—The contribution of remote sensing to potential risk assessments. For. Ecol. Manag. 2017, 402, 76–91. [Google Scholar] [CrossRef]
- Salmi, T.; Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; Publications on Air Quality. No. 31; Finnish Meteorological Institute: Helsinki, Finland, 2002.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference of Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Łabędzki, L. Estimation of local drought frequency in Central Poland using the standardized precipitation index SPI. Irrig. Drain. 2007, 56, 67–77. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; U.S. Weather Bureau: Washington, DC, USA, 1965.
- Pierzgalski, E.; Boczoń, A.; Tyszka, J. Variability of precipitation and groundwater table in the Białowieża National Park. Kosmos Probl. Nauk Biol. 2002, 4, 415–425. (In Polish) [Google Scholar]
- Wendling, U.; Muller, J. Entwicklung eines Verfahrens zur rechnerischen Abschatzung der Verdunstung im Winter (Treatise of a method for numerical estimation of the evapotranspiration in winter). Z. Meteorol. 1984, 34, 82–85. [Google Scholar]
- Liu, S. A new model for the prediction of rainfall interception in forest canopies. Ecol. Model. 1997, 99, 151–159. [Google Scholar] [CrossRef]
- Liu, S. Evaluation of the Liu model for predicting rainfall interception in forests world-wide. Hydrol. Process. 2001, 15, 2341–2360. [Google Scholar] [CrossRef]
- Kondo, J.; Nakazono, M.; Watanabe, T. Hydrological climate in Japan (2): Forest rainfall interception. J. Jpn. Soc. Hydrol. Water Resour. 1992, 5, 29–36, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Komatsu, H.; Shinohara, Y.; Kume, T.; Otsuki, K. Relationship between annual rainfall and interception ratio for forests across Japan. J. Hydrol. 2008, 256, 1189–1197. [Google Scholar] [CrossRef]
- Ostonen, I.; Lohmus, K.; Pajuste, K. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods. For. Ecol. Manag. 2005, 212, 264–277. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 13 February 2018).
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; LeRoy Miller, H.; Chen, Z. Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Brohan, P.; Kennedy, J.J.; Haris, I.; Tett, S.F.B.; Jones, P.D. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. 2006, 111, D12106. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, R.; Jones, R.; Kolli, R.K.; Kwon, W.; Laprise, R.; et al. (Eds.) Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, University Press Cambridge, Chapter 11; Cambridge University Press: Cambridge, UK; New York, NY, USA; pp. 847–940.
- Brázdil, R.; Chromá, K.; Dobrovolný, P.; Tolasz, R. Climate fluctuations in the Czech Republic during the period 1961–2005. Int. J. Climatol. 2009, 29, 223–242. [Google Scholar]
- Wang, Q.; Wu, J.; Lei, T.; He, B.; Wu, Z.; Liu, M.; Mo, X.; Geng, G.; Li, X.; Zhou, H.; et al. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quat. Int. 2014, 349, 10–21. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.; Baringer, M. State of the Climate in 2010. Bull. Am. Meteorol. Soc. 2011, 92, S1–S236. [Google Scholar] [CrossRef]
- Burke, E.J.; Brown, S.J.; Christidis, N. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeorol. 2006, 7, 1113–1125. [Google Scholar] [CrossRef]
- Briffa, K.R.; van der Schrier, G.; Jones, P.D. Wet and dry summers in Europe since 1750: Evidence of increasing drought. Int. J. Climatol. 2009, 29, 1894–1905. [Google Scholar] [CrossRef]
- Degirmendžić, J.; Kożuchowski, K.; Żmudzka, E. Changes of air temperature and precipitation in Poland in the period 1951–2000 and their relationship to atmospheric circulation. Int. J. Climatol. 2004, 24, 291–310. [Google Scholar] [CrossRef] [Green Version]
- Dubrovsky, M.; Svoboda, M.D.; Trnka, M.; Hayes, M.J.; Wilhite, D.A.; Zalud, Z.; Hlavinka, P. Application of relative drought indices in assessing climate change impacts on drought conditions in Czechia. Theor. Appl. Climatol. 2009, 96, 155–171. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Tumajer, J.; Altman, J.; Štěpánek, P.; Treml, V.; Doležal, J.; Cienciala, E. Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agric. For. Meteorol. 2017, 247, 56–64. [Google Scholar] [CrossRef]
- Lévesque, M.; Rigling, A.; Bugmann, H.; Weber, P.; Brang, P. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric. For. Meteorol. 2014, 197, 1–12. [Google Scholar] [CrossRef]
- Berg, E.E.; Henry, J.D.; Fastie, C.L.; de Volder, A.D.; Matsuoka, S.M. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. For. Ecol. Manag. 2006, 227, 219–232. [Google Scholar] [CrossRef]
- Kölling, C.; Knoke, T.; Schall, P.; Ammer, C. Überlegungen zum Risiko des Fichtenanbaus in Deutschland vor dem Hintergrund des Klimawandels. Forstarchiv 2009, 80, 42–54. [Google Scholar]
- Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Kolb, T.E. Responses of tree-killing bark beetles to a changing climate. In Climate Change and Insect Pests; Bjorkman, C., Niemela, P., Eds.; Centre for Agriculture and Biosciences International (CABI): Wallingford, UK, 2015; pp. 173–201. [Google Scholar]
- Wermelinger, B.; Seifert, M. Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L.) (Col., Scolytidae). J. Appl. Entomol. 1998, 122, 185–191. [Google Scholar] [CrossRef]
- Hlásny, T.; Turčáni, M. Insect pests as climate change driven disturbances in forest ecosystems. In Bioclimatology and Natural Hazards; Střelcová, K., Matyas, C., Kleidon, A., Lapin, M., Matejka, F., Blazenec, M., Kvarenina, J., Holecy, J., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 165–177. [Google Scholar]
- Mokrzecki, Z. Report on the control of bark beetle in the Bialowieza Forest in 1922. Las Polski 1923, 4, 297–307. (In Polish) [Google Scholar]
- Paczoski, J. Bialowieza Forests; Monografie Naukowe 1; Państwowa Rada Ochrony Przyrody: Poznań, Poland, 1930. (In Polish) [Google Scholar]
- Sokołowski, A.W. Forests of the Białowieża Forest; Centrum Informacyjne Lasów Państwowych (CILP): Warsaw, Poland, 2004; ISBN 83-88478-44-3. (In Polish).
- Żmihorski, M.; Chylarecki, P.; Orczewska, A.; Wesołowski, T. Białowieża Forest: A new threat. Science 2018, 361, 238. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.; Starzyk, J.R.; Kolk, A.; Grodzki, W. Threat of Norway spruce caused by the bark beetle Ips typographus (L.) in the stands of the forest promotion complex “Puszcza Białowieska” in 2000–2002. For. Res. Pap. 2004, 3, 5–30. [Google Scholar]
- Czerepko, J. A long-term study of successional dynamics in the forest wetlands. For. Ecol. Manag. 2008, 255, 630–642. [Google Scholar] [CrossRef]
- Miścicki, S. Structure and dynamics of temperate lowland natural forest in the Białowieża National Park. Pol. For. 2012, 85, 473–483. [Google Scholar] [CrossRef]
- Miścicki, S. Changes in the stands of the Białowieża National Park from 2000 to 2015. For. Res. Pap. 2016, 77, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Stadelmann, G.; Bugmann, H.; Meier, F.; Wermelinger, B.; Bigler, C. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For. Ecol. Manag. 2013, 305, 273–281. [Google Scholar] [CrossRef]
- Wermelinger, B.; Epper, C.; Kenis, M.; Ghosh, S.; Holdenrieder, O. Emergence patterns of univoltine and bivoltine Ips typographus (L.) populations and associated natural enemies. J. Appl. Entomol. 2012, 136, 212–224. [Google Scholar] [CrossRef]
Name | Air Temperature (°C) | |||
---|---|---|---|---|
Annual Average | May–July Average | Minimum Annual | Maximum Annual | |
Years | 1950–2015 | |||
n | 66 | 66 | 66 | 66 |
Test Z | 3.86 | 2.85 | −0.09 | 2.06 |
Significance (1) | *** | ** | n.s. | * |
Sen’s estimate for temperature difference between 2015 and 1950 (°C) | 1.27 | 1.26 | −0.2 | 1.37 |
I Period | II Period | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Year | Month | SPI | PDSI | CWB | SWSDef. | Year | Month | SPI | PDSI | CWB | SWSDef. |
1952 | VII | * | * | 1986 | V | * | * | ||||
1954 | V | * | * | 1986 | VI | * | * | ||||
1954 | VI | * | * | 1986 | VII | * | * | ||||
1954 | VII | * | * | 1987 | VI | * | * | ||||
1956 | VI | * | * | 1989 | V | * | * | ||||
1956 | VII | * | * | 1989 | VII | * | * | ||||
1957 | VI | * | * | 1990 | V | * | * | * | |||
1959 | V | * | * | * | 1990 | VI | * | * | * | ||
1959 | VII | * | * | 1990 | VII | * | * | ||||
1963 | VII | * | * | 1991 | VI | * | * | ||||
1964 | VI | * | * | * | * | 1991 | VII | * | * | ||
1964 | VII | * | * | * | * | 1992 | V | * | * | ||
1966 | VI | * | * | * | 1992 | VI | * | * | * | ||
1966 | VII | * | * | 1992 | VII | * | * | ||||
1993 | V | * | * | * | |||||||
1993 | VI | * | * | * | |||||||
1993 | VII | * | * | ||||||||
1994 | VI | * | * | ||||||||
1994 | VII | * | * | * | |||||||
1995 | VI | * | * | ||||||||
1995 | VII | * | * | ||||||||
1996 | V | * | * | ||||||||
1996 | VII | * | * | ||||||||
1997 | VI | * | * | ||||||||
2000 | V | * | * | * | |||||||
2001 | V | * | * | ||||||||
2001 | VI | * | * | ||||||||
2001 | VII | * | * | ||||||||
2003 | VI | * | * | ||||||||
2006 | VI | * | * | ||||||||
2006 | VII | * | * | * | |||||||
2015 | VI | * | * | * |
Year | Norway Spruce | Other Species | Percentage of Spruce | |||||
---|---|---|---|---|---|---|---|---|
Sanitary Felling (m3) | Total Cutting (m3) | % | Sanitary Felling (m3) | Total Cutting (m3) | % | Sanitary Felling | Sanitary Felling | |
In Sanitary Felling All Species | In Total Cutting All Species | |||||||
2002 | 21,805 | 22,819 | 95.6 | 1006 | 9643 | 10.4 | 95.6 | 67.2 |
2003 | 33,454 | 34,125 | 98 | 630 | 5941 | 10.6 | 98.2 | 83.5 |
2004 | 21,098 | 22,536 | 93.6 | 193 | 5162 | 3.7 | 99.1 | 76.2 |
2005 | 10,830 | 12,977 | 83.5 | 768 | 10,282 | 7.5 | 93.4 | 46.6 |
2006 | 6503 | 9486 | 68.6 | 881 | 9117 | 9.7 | 88.1 | 35.0 |
2007 | 12,496 | 15,394 | 81.2 | 1125 | 9366 | 12 | 91.7 | 50.5 |
2008 | 13,490 | 16,645 | 81.0 | 804 | 8388 | 9.6 | 94.4 | 53.9 |
2009 | 8838 | 13,890 | 63.6 | 898 | 10,297 | 8.7 | 90.8 | 36.5 |
2010 | 4282 | 8152 | 52.5 | 547 | 9112 | 6.0 | 88.7 | 24.8 |
2011 | 3296 | 6040 | 54.6 | 490 | 5172 | 9.5 | 87.0 | 29.4 |
2012 | 2399 | 5883 | 40.8 | 459 | 4808 | 9.6 | 83.9 | 22.4 |
2013 | 6194 | 9036 | 68.5 | 414 | 5396 | 7.7 | 93.7 | 42.9 |
2014 | 10,004 | 11,467 | 87.2 | 532 | 3778 | 14.1 | 94.9 | 65.6 |
2015 | 16,755 | 17,769 | 94.3 | 953 | 3722 | 25.6 | 94.6 | 78.0 |
2016 | 4838 | 4996 | 96.8 | 179 | 262 | 68.2 | 96.4 | 92.0 |
2017 | 35,522 | 36,617 | 97 | 459 | 1517 | 30.3 | 98.7 | 93.1 |
sum | 211,804 | 247,832 | 10,337 | 101,964 | ||||
mean | 13,238 | 15,489 | 85.5 | 646.1 | 6372.7 | 10.1 | 95.3 | 60.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boczoń, A.; Kowalska, A.; Ksepko, M.; Sokołowski, K. Climate Warming and Drought in the Bialowieza Forest from 1950–2015 and Their Impact on the Dieback of Norway Spruce Stands. Water 2018, 10, 1502. https://doi.org/10.3390/w10111502
Boczoń A, Kowalska A, Ksepko M, Sokołowski K. Climate Warming and Drought in the Bialowieza Forest from 1950–2015 and Their Impact on the Dieback of Norway Spruce Stands. Water. 2018; 10(11):1502. https://doi.org/10.3390/w10111502
Chicago/Turabian StyleBoczoń, Andrzej, Anna Kowalska, Marek Ksepko, and Karol Sokołowski. 2018. "Climate Warming and Drought in the Bialowieza Forest from 1950–2015 and Their Impact on the Dieback of Norway Spruce Stands" Water 10, no. 11: 1502. https://doi.org/10.3390/w10111502
APA StyleBoczoń, A., Kowalska, A., Ksepko, M., & Sokołowski, K. (2018). Climate Warming and Drought in the Bialowieza Forest from 1950–2015 and Their Impact on the Dieback of Norway Spruce Stands. Water, 10(11), 1502. https://doi.org/10.3390/w10111502