Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions
Abstract
:1. Introduction
- (i)
- the annual probability of soil salinization below a considered threshold at the start of the tomato spring–summer cropping season. This probability is inversely related to the total amount of rainfall that occurred in the previous fall–winter period, which acts in promoting salt leaching;
- (ii)
- the consequent damage to the tomato cultivation caused by soil salinization in terms of crop yield reduction with respect to the expected maximum yield.
2. Materials and Methods
2.1. Reference Area
2.2. Dynamic of Aquifer and Soil Salinity in the Reference Area
2.3. Environmental Data
2.4. Simulation Model of Water and Soil Salinity Balance
2.5. Simulation Conditions and Scenarios of Salinity Risk
2.6. Procedure to Assess the Soil Salinization Risk
3. Results
3.1. Climatic and Irrigation Trends
3.2. Time-Course of Soil Salinity
3.3. Distribution of Precipitation in the Fallow Period and Salt Leaching Capacity by Rainfall
3.4. Simulated Decrease of Tomato Yields Due to Water Salinity
4. Discussion
- (a)
- considerably reduce the total amount of salts brought into the soil with irrigation; this means reducing the total amount of irrigation water and applying water with a lower salt concentration;
- (b)
- make the most of the amount of fresh water (i.e., rainfall) in benefitting the soil through salt leaching.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bless, A.E.; Colin, F.; Crabit, A.; Devaux, N.; Philippon, O.; Follain, S. Landscape evolution and agricultural land salinization in coastal area: A conceptual model. Sci. Total Environ. 2018, 625, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, G.; Montanarella, L.; Rusco, E. (Eds.) Threats to Soil Quality in Europe EUR 23438—Scientific and Technical Research Series; Office for Official Publications of the European Communities: Luxembourg, 2008; pp. 61–74. [Google Scholar]
- Nachshon, U. Cropland Soil Salinization and Associated Hydrology: Trends, Processes and Examples. Water 2018, 10, 1030. [Google Scholar] [CrossRef]
- Joint Research Centre (JRC). The State of Soil in Europe; JRC Reference Reports; European Environment Agency, European Union, Publications Office of the European Union: Luxembourg, 2012; p. 71. [Google Scholar]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency (EEA). Europe’s Environment, the Third Assessment; Environmental Assessment Report No. 10; Office for Official Publications of the European Communities: Luxembourg, 2003; p. 341. [Google Scholar]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Xiloyannis, C.; Montanaro, G.; Sofo, A. Water emergency. Proposal in order to contain drought damages in fruit crops [Apulia—Basilicata]. Frutticoltura 2002, 7–8, 19–27. (In Italian) [Google Scholar]
- Libutti, A.; Monteleone, M. Irrigation management in Mediterranean salt affected agriculture: How leaching operates. Ital. J. Agron. 2012, 7, e5. [Google Scholar] [CrossRef]
- Perez-Sirvent, C.; Martınez-Sanchez, M.J.; Vidal, J.; Sanchez, A. The role of low-quality irrigation water in the desertification of semi-arid zones in Murcia, SE Spain. Geoderma 2003, 113, 109–125. [Google Scholar] [CrossRef]
- Bahri, H.; Annabi, M.; Houot, S.; Bougzala, M.; Latiri, K. Effet du type des résidus de cultures et de la salinité de l’eau sur la minéralisation du carbone organique dans un sol cultivé. Annales de L’inrgref 2010, 14, 117–124. [Google Scholar]
- Chaganti, V.N.; Crohn, D.M.; Simunek, J. Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agric. Water Manag. 2015, 255–265. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Sabate, S.; Gracia, C. Natural systems: Terrestrial ecosystems. In Report on Climate Change in Catalonia; Llebot, J.E., Ed.; Institut d’estudis Catalans: Barcelona, Spain, 2005; pp. 517–553. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Penuelas, J.; Sardans, J.; Estiarte, M.; Ogaya, R.; Carnicer, J.; Coll, M.; Barbeta, A.; RivasUbach, A.; Llusià, J.; Garbulsky, M.; et al. Evidence of current impact of climate change on life: A walk from genes to the biosphere. Glob. Chang. Biol. 2013, 19, 2303–2338. [Google Scholar] [CrossRef] [PubMed]
- Díaz, F.J.; Grattan, S.R.; Reyes, J.A.; de la Roza-Delgado, B.; Benes, S.E.; Jiménez, C.; Dorta, M.; Tejedor, M. Using saline soil and marginal quality water to produce alfalfa in arid climates. Agric. Water Manag. 2018, 199, 11–21. [Google Scholar] [CrossRef]
- Abrol, I.P.; Yadav, J.S.P.; Massoud, F.I. Salt-Affected Soils and Their Management. FAO Soils Bulletin No. 39; Soil Resources Management and Conservation Service, FAO Land and Water Development Division; Food and Agriculture Organization of the United Nations: Rome, Italy, 1988. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper No. 29 Rev. 1; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994. [Google Scholar]
- Barnard, J.H.; van Rensburg, L.D.; Bennie, A.T.P. Leaching irrigated saline sandy to sandy loam apedal soils with water of a constant salinity. Irrig. Sci. 2010, 28, 191–201. [Google Scholar] [CrossRef]
- Corwin, D.L.; Rhoades, D.J.; Simunek, J. Leaching requirement for soil salinity control: Steady-state versus transient models. Agric. Water Manag. 2007, 90, 165–180. [Google Scholar] [CrossRef]
- Letey, J.; Hoffman, G.J.; Hopmans, J.W.; Grattan, S.R.; Suarez, D.; Corwin, D.L.; Oster, J.D.; Wu, L.; Amrhein, C. Evaluation of soil salinity leaching requirement guidelines. Agric. Water Manag. 2011, 98, 502–506. [Google Scholar] [CrossRef]
- Monteleone, M.; Libutti, A. Salt leaching due to rain in Mediterranean climate: Is it enough? Ital. J. Agron. 2012, 7, e6. [Google Scholar] [CrossRef]
- Moreno, F.; Cabera, F.; Andreu, L.; Vaz, R.; Martinaranda, J.; Vachaud, G. Water movement and salt leaching in drained and irrigated marsh soils of southwest Spain. Agric. Water Manag. 1995, 27, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Qadir, M.; Ghafoor, A.; Murtaza, G. Amelioration strategies for saline soils: A review. Land Degrad. Dev. 2000, 11, 501–521. [Google Scholar] [CrossRef]
- Gatta, G.; Libutti, A.; Gagliardi, A.; Beneduce, L.; Brusetti, L.; Borrusso, L.; Disciglio, G.; Tarantino, E. Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agric. Water Manag. 2015, 149, 33–43. [Google Scholar] [CrossRef]
- Vergine, P.; Salerno, C.; Libutti, A.; Beneduce, L.; Gatta, G.; Gerardi, G.; Pollice, A. Closing the water cycle in the agro-i ndustrial sector by reusing treated wastewater for irrigation. J. Clean. Prod. 2017, 164, 587–596. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar]
- ISTAT. Electronic Information System on Agriculture and Livestock; Italian National Statistical Institute (ISTAT): Rome, Italy. Available online: http://agri.istat.it/ (accessed on 14 May 2018).
- Zingaro, D.; Portoghese, I.; Giannoccaro, G. Modelling crop pattern changes and water resources exploitation: A case study. Water 2017, 9, 685. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Merchán, D.; Rosner, M.; Meixner, A.; Ledesma-Ruiz, R. Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Sci. Total Environ. 2017, 587–588, 282–295. [Google Scholar] [CrossRef] [PubMed]
- HWSD Harmonized World Soil Database v. 1.2. Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/it/ (accessed on 24 May 2018).
- AGRI4CAST Interpolated Meteorological Data. Available online: http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST/Data-distribution/AGRI4CAST-Interpolated-Meteorological-Data (accessed on 21 May 2018).
- Ritchie, J.T. A model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef]
- Ritchie, J.T. Water dynamics in the soil-plant-atmosphere. Plants Soil 1981, 58, 81–96. [Google Scholar] [CrossRef]
- Ritchie, J.T. Soil water availability. Plants Soil 1981, 58, 327–338. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Singh, U.; Godwin, D.C.; Bowen, W.T. Cereal growth, development and yield. In Understanding Options of Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers and International Consortium for Agricultural Systems Applications: Dordrecht, The Netherlands, 1998; pp. 79–98. [Google Scholar]
- Loomis, R.S.; Connor, D.J. Crop Ecology: Productivity and Management in Agricultural Systems; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Hillel, D. Soil and Water, Physical Principles and Processes; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage, Paper No. 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Van Hoorn, J.W.; van Alphen, J.G. Salinity control. In Drainage Principles and Applications; Ritzema, H.P., Ed.; Int. Inst. of Land Reclamation (ILRI): Wageningen, The Netherlands, 1994; pp. 553–600. [Google Scholar]
- Van Genuchten, M.T.; Hoffman, G.J. Analysis of crop salt tolerance data. In Soil Salinity under Irrigation-Process and Management; Ecological Studies 51; Shainberg, I., Shalhevet, J., Eds.; Springer: New York, NY, USA, 1984; pp. 258–271. [Google Scholar]
- Van Genuchten, M.T.; Gupta, S.K. A reassessment of the crop tolerance response function. J. Indian Soc. Soil Sci. 1993, 41, 730–737. [Google Scholar]
- Libutti, A.; Monteleone, M. Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions. Agric. Water Manag. 2017, 186, 40–50. [Google Scholar] [CrossRef]
Soil Attributes HWSD [32] 1 | Crop Attributes (Tomato) | ||
---|---|---|---|
Soil unit (FAO 90) 2 | Eutric Fluvisols | ET crop coefficient | |
Texture (USDA) 3 | loam | Initial value | Kc IN = 0.5 |
sand | 39% | Maximum value | KC.MAX = 1.2 |
silt | 40% | Inflection point | F = 25 t (day of crop) cycle) |
clay | 21% | Increase rate | G1 = 0.21 t−1 |
gravel | 4% | Decrease rate | G2 = 0.05 t−1 |
bulk density | 1.4 kg dm−3 | Crop rooting depth | |
OM | 1.5% | Initial value | H IN = 200 mm |
WFC | 270 mm m−1 | Maximum value | H MAX = 600 mm |
WWP | 120 mm m−1 | Inflection point | F = 36 t |
WAV (WFC − WWP) | 150 mm m−1 | Increase rate | G = 0.09 t−1 |
pH | 7.2 | Irrigation management | |
ESP | 2% | Readily available fraction | α = 4% |
CEC | 16 cmol kg−1 | Leaching fraction | λ = 20% |
Phase | Saline | Leaching efficiency | γ = 80% |
Obstacles to Roots | >800 mm | Crop Salinity yield crease | δ = 3; ECe 50 = 8 dS m−1 |
Impermeable Layer | >1500 mm | Crop cycle | 110–230 day of the year |
Soil Water Regime | Wet soil conditions: | Water salinity | 3 modelling scenarios: |
(0–800 mm) 3–6 months | annual average value | ECi AV = 2, 3, 4 dS m−1 | |
(0–400 mm) < 1 month | annual amplitude | ΔECi = 0.5, 1.0, 1.5 dS m−1 | |
Terrain slope | Flat: 0–0.5% | annual phase | Ph = 130° day of the year |
Drainage class | Poor |
S3 | S4 | S5 | ||||
---|---|---|---|---|---|---|
Soil Layer | Estimate | Dev Std | Estimate | Dev Std | Estimate | Dev Std |
(mm) | (dS m−1) | (dS m−1) | (dS m−1) | (dS m−1) | (dS m−1) | (dS m−1) |
L1: 0–200 | 1.58 | 0.24 | 2.18 | 0.34 | 2.80 | 0.44 |
L2: 200–400 | 3.65 | 0.74 | 5.06 | 1.04 | 6.51 | 1.34 |
L3: 400–600 | 4.51 | 1.33 | 6.24 | 1.86 | 7.98 | 2.41 |
L4: 400–600 | 3.53 | 1.60 | 4.93 | 2.24 | 6.29 | 2.90 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions. Water 2018, 10, 1503. https://doi.org/10.3390/w10111503
Libutti A, Cammerino ARB, Monteleone M. Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions. Water. 2018; 10(11):1503. https://doi.org/10.3390/w10111503
Chicago/Turabian StyleLibutti, Angela, Anna Rita Bernadette Cammerino, and Massimo Monteleone. 2018. "Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions" Water 10, no. 11: 1503. https://doi.org/10.3390/w10111503
APA StyleLibutti, A., Cammerino, A. R. B., & Monteleone, M. (2018). Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions. Water, 10(11), 1503. https://doi.org/10.3390/w10111503