Improved Process Representation in the Simulation of the Hydrology of a Meso-Scale Semi-Arid Catchment
Abstract
:1. Introduction
- Interpret key landscape elements with respect to their hydrological functioning, and gather available data for hydrological modelling in the study area;
- Analyse runoff signatures and processes from available gauged catchments;
- Setup a process-based hydrological model that can utilize spatial (gridded) data and that is easy to adapt to different hydrological processes;
- Gradually increase model complexity and assess model sensitivity to different inputs and parameters; and
- Understand the key hydrological processes and runoff generation mechanisms in the catchment, and how this could improve hydrological modelling.
2. Materials and Methods
2.1. Study Area
2.2. Data Used
- Domestic water supply to the Umjindi Local Municipality (over 71,200 population), with a demand of 3.9 × 106 m3 year−1—this is supplied from an interbasin transfer from the neighbouring Lomati dam (part of the Komati catchment) [30].
- Commercial afforestation (considered a streamflow reduction activity) of 443 km2, with an estimated streamflow reduction of 40 × 106 m3 year−1 [30].
2.3. Landscape Classification
- Stream initiation at 1000 m.
- The HAND threshold to separate wetlands from Plateau and Hillslope was 10 m.
- The slope threshold to separate Hillslope from Plateau was 12%.
2.4. Dominant Runoff Generation Zones
2.5. The STREAM Model
2.6. Model Inputs, Parameters and Setup
2.7. Model Simulations
- Rainfall input (Station data with Thiessen regionalization, with Inverse Distance Weighing and elevation correction, and Remote sensing precipitation from Chirps database).
- Unsaturated/saturated zone separation coefficient Cr (-).
- Maximum ground water storage in saturated zone parameter GWSmax (mm), derived from DEM or from HAND maps.
- Implementation of capillary rise process, with different thresholds of Cflux (mm/d).
- Combinations of capillary rise and different cr parameters.
- Implementation of capillary rise with initiation threshold GWSmin (GWSmin = [0.5, 0.2, 0.1, 0.01] × GWSmax).
- Maximum storage in unsaturated zone parameter Sumax (mm).
2.8. Runoff Signatures and Assessment of Model Performance
3. Results
3.1. Model Parameterization
3.2. Model Simulations
3.3. Comparison of Runoff Signatures
3.3.1. Annual Runoff
3.3.2. Seasonal Runoff
3.3.3. Flow Duration Curves
3.3.4. Low Flows and Floods
3.3.5. Hydrographs
4. Discussion
4.1. Implications for Hydrological Process Understanding
4.2. Implications for Water Resource Management
4.3. Input Uncertainty and Model Structure
4.4. Limitations and Gaps in Process Understanding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Streamgauge | Noordkaap X2H010 | Queens X2H008 | Suidkaap X2H031 | Kaap Total X2H022 | |
---|---|---|---|---|---|
Sub-basin area (km2) | 126 | 180 | 262 | 1640 | |
HAND zones | Wetland | 8% | 7% | 7% | 8% |
Plateau | 51% | 32% | 61% | 39% | |
Hillslope | 42% | 61% | 32% | 53% | |
Soil texture | Clay | 19% | 5% | 5% | 4% |
Sandy clay | 4% | 7% | 9% | 4% | |
Clay loam | 42% | 42% | 25% | 39% | |
Sandy clay loam | 34% | 46% | 60% | 53% | |
Sandy loam | 0% | 0% | 1% | 0% | |
Geology | Granite | 97% | 58% | 98% | 52% |
Lava | 0% | 28% | 1% | 16% | |
Arenite | 0% | 2% | 0% | 9% | |
Ultramafic rocks | 0% | 4% | 0% | 2% | |
Quartzite | 3% | 0% | 0% | 0% | |
Gneiss | 0% | 0% | 1% | 6% | |
Lutaceous arenite | 0% | 7% | 0% | 14% | |
LULC | Forest/Woodland | 14% | 12% | 9% | 20% |
Bush/Shrub | 11% | 9% | 17% | 32% | |
Grassland | 7% | 18% | 10% | 14% | |
Plantations | 62% | 60% | 52% | 23% | |
Water | 0% | 0% | 0% | 0% | |
Wetlands | 0% | 1% | 1% | 1% | |
Bare | 0% | 0% | 0% | 0% | |
Agriculture: Rainfed, Planted pasture, Fallow | 2% | 0% | 5% | 3% | |
Agriculture: Irrigated | 3% | 0% | 5% | 6% | |
Urban and Mines | 0% | 0% | 0% | 2% | |
Mean Annual Runoff observed (mm/y) | 149 | 99 | 120 | 66 | |
Mean Annual Runoff naturalized (mm/y) a | 216 | 146 | 210 | 116 | |
Mean annual Precipitation (mm/y) | 1101 | 1016 | 905 | 900 | |
Mean annual potential evaporation (mm/y) | 1425 | 1369 | 1451 | 1435 |
References
- Hughes, D.A. Hydrological modelling, process understanding and uncertainty in a southern African context: Lessons from the northern hemisphere. Hydrol. Process. 2016, 30, 2419–2431. [Google Scholar] [CrossRef]
- Hughes, D.A.; Jewitt, G.; Mahé, G.; Mazvimavi, D.; Stisen, S. A review of aspects of hydrological sciences research in Africa over the past decade. Hydrol. Sci. J. 2015, 60, 1865–1879. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M.; Wagener, T.; Viglione, A.; Savenije, H. Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Viglione, A.; Parajka, J.; Rogger, M.; Salinas, J.L.; Laaha, G.; Sivapalan, M.; Blöschl, G. Comparative assessment of predictions in ungauged basins—Part 3: Runoff signatures in Austria. Hydrol. Earth Syst. Sci. 2013, 17, 2263–2279. [Google Scholar] [CrossRef]
- McMillan, H.; Westerberg, I.; Branger, F. Five guidelines for selecting hydrological signatures. Hydrol. Process. 2017, 31, 4757–4761. [Google Scholar] [CrossRef]
- Uhlenbrook, S. An empirical approach for delineating spatial units with the same dominating runoff generation processes. Phys. Chem. Earth Parts A/B/C 2003, 28, 297–303. [Google Scholar] [CrossRef]
- Scherrer, S.; Naef, F. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrol. Process. 2003, 17, 391–401. [Google Scholar] [CrossRef]
- Van Tol, J.J.; Le Roux, P.A.L.; Lorentz, S.A.; Hensley, M. Hydropedological Classification of South African Hillslopes. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Hellebrand, H.; Seeger, M.; Schobel, S. Identification and regionalization of dominant runoff processes a GIS-based and a statistical approach. Hydrol. Earth Syst. Sci. 2009, 13, 779–792. [Google Scholar] [CrossRef]
- Hümann, M.; Müller, C. Improving the GIS-DRP approach by means of delineating runoff characteristics with new discharge relevant parameters. ISPRS Int. J. Geo-Inf. 2013, 2, 27–49. [Google Scholar] [CrossRef]
- Savenije, H.H.G. HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”. Hydrol. Earth Syst. Sci. 2010, 14, 2681–2692. [Google Scholar] [CrossRef]
- Gharari, S.; Hrachowitz, M.; Fenicia, F.; Savenije, H.H.G. Hydrological landscape classification: Investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrol. Earth Syst. Sci. 2011, 15, 3275–3291. [Google Scholar] [CrossRef]
- Gao, H.; Hrachowitz, M.; Fenicia, F.; Gharari, S.; Savenije, H.H.G. Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China. Hydrol. Earth Syst. Sci. 2014, 18, 1895–1915. [Google Scholar] [CrossRef] [Green Version]
- van Zijl, G.; Le Roux, P. Creating a conceptual hydrological soil response map for the Stevenson Hamilton Research Supersite, Kruger National Park, South Africa. Water SA 2014, 40, 331–336. [Google Scholar] [CrossRef]
- Soulsby, C.; Tetzlaff, D.; Rodgers, P.; Dunn, S.; Waldron, S. Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: An initial evaluation. J. Hydrol. 2006, 325, 197–221. [Google Scholar] [CrossRef]
- Van Huyssteen, C.W. A review of advances in hydropedology for application in South Africa: Review article. S. Afr. J. Plant Soil 2008, 25, 245–253. [Google Scholar] [CrossRef]
- Schulze, R. Hydrological characteristics and properties of soils in Southern Africa 1: Runoff response. Water SA 1985, 11, 121–128. [Google Scholar]
- Pike, A.; Schulze, R. AUTOSOILS: A Program to Convert ISCW Soils Attributes to Variables Usable in Hydrological Models; University of KwaZulu-Natal, School of Bioresources Engineering and Environmental Hydrology: Pietermaritzburg, South Africa, 1995. [Google Scholar]
- Van Zijl, G.M.; van Tol, J.J.; Riddell, E.S. Digital soil mapping for hydrological modelling. In Digital Soil Mapping Across Paradigms, Scales and Boundaries; Zhang, G.-L., Brus, D., Liu, F., Song, X.-D., Lagacherie, P., Eds.; Springer: Singapore, 2016; pp. 115–129. [Google Scholar]
- Van Tol, J.J.; Van Zijl, G.M.; Riddell, E.S.; Fundisi, D. Application of hydropedological insights in hydrological modelling of the Stevenson-Hamilton Research Supersite, Kruger National Park, South Africa. Water SA 2015, 41, 525–533. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; de Jesus, J.M.; Tamene, L. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Camacho Suarez, V.V.; Saraiva Okello, A.M.L.; Wenninger, J.W.; Uhlenbrook, S. Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations. Hydrol. Earth Syst. Sci. 2015, 19, 4183–4199. [Google Scholar] [CrossRef] [Green Version]
- Saraiva Okello, A.M.L.; Uhlenbrook, S.; Jewitt, G.P.W.; Masih, I.; Riddell, E.S.; Van der Zaag, P. Hydrograph separation using tracers and digital filters to quantify runoff components in a semi-arid meso-scale catchment. Hydrol. Process. 2018, 32, 1334–1350. [Google Scholar] [CrossRef]
- Middleton, B.J.; Bailey, A.K. Water Resources of South Africa, 2005 Study; WRC Report No. TT 380/08; Water Research Commission: Pretoria, South Africa, 2009. [Google Scholar]
- Sharpe, M.R.; Sohnge, A.P.; Zyl, J.S.V.; Joubert, D.K.; Mulder, M.P.; Clubley-Armstrong, A.R.; Plessis, C.P.D.; Eeden, O.R.V.; Rossouw, P.J.; Visser, D.J.L.; et al. 2530 Barberton; Council for Geoscience, Ed.; Department of Minerals and Energy Affairs, Government Printer: Cape Town, South Africa, 1986.
- Saraiva Okello, A.M.L.; Masih, I.; Uhlenbrook, S.; Jewitt, G.P.W.; van der Zaag, P.; Riddell, E. Drivers of spatial and temporal variability of streamflow in the Incomati River basin. Hydrol. Earth Syst. Sci. 2015, 19, 657–673. [Google Scholar] [CrossRef] [Green Version]
- Van Eekelen, M.W.; Bastiaanssen, W.G.M.; Jarmain, C.; Jackson, B.; Ferreira, F.; van der Zaag, P.; Saraiva Okello, A.; Bosch, J.; Dye, P.; Bastidas-Obando, E.; et al. A novel approach to estimate direct and indirect water withdrawals from satellite measurements: A case study from the Incomati basin. Agric. Ecosyst. Environ. 2015, 200, 126–142. [Google Scholar] [CrossRef]
- Mallory, S.; Beater, A. Hydrology Report for the Crocodile (East) River Catchment; Department of Water Affairs and Forestry: Pretoria, South Africa, 2009. [Google Scholar]
- Bailey, A.; Pitman, W. Water Resources of South Africa, 2012 Study: User Guide; WRC Report K5/2143/1; Water Research Comission: Gezina, South Africa, 5 November 2015. [Google Scholar]
- Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Kriek, M.; Schepel, M. STREAM (Spatial tools for river basins and environment and analysis of management options): ‘set up and requirements’. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 1999, 24, 591–595. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Savenije, H.H.G.; Gerrits, A.M.J.; Zapreeva, E.A.; Klees, R. Comparison of two model approaches in the Zambezi river basin with regard to model reliability and identifiability. Hydrol. Earth Syst. Sci. 2006, 10, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Kiptala, J.K.; Mul, M.L.; Mohamed, Y.A.; van der Zaag, P. Modelling stream flow and quantifying blue water using a modified STREAM model for a heterogeneous, highly utilized and data-scarce river basin in Africa. Hydrol. Earth Syst. Sci. 2014, 18, 2287–2303. [Google Scholar] [CrossRef] [Green Version]
- Gerrits, A. Hydrological Modelling of the Zambezi Catchment for Gravity Measurements; University of Technology: Delft, The Netherlands, 2005. [Google Scholar]
- Dye, P.J. Response of Eucalyptus grandis trees to soil water deficits. Tree Physiol. 1996, 16, 233–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewitt, G. Water and Forests. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Scott, D.F.; Lesch, W. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. J. Hydrol. 1997, 199, 360–377. [Google Scholar] [CrossRef]
- Schulze, R.; Maharaj, M.; Warburton, M.; Gers, C.; Horan, M.; Kunz, R.; Clark, D. South African Atlas of Climatology and Agrohydrology; Pretoria, RSA, WRC Report; Water Research Commission: Pretoria, South Africa, 2007; Volume 1489, p. 6. [Google Scholar]
- Sieber, A.; Uhlenbrook, S. Sensitivity analyses of a distributed catchment model to verify the model structure. J. Hydrol. 2005, 310, 216–235. [Google Scholar] [CrossRef]
- Liu, Y.; De Smedt, F. WetSpa Extension, a GIS-Based Hydrologic Model for Flood Prediction and Watershed Management; Vrije Universiteit Brussel: Brussels, Belgium, 2004; pp. 1–108. [Google Scholar]
- Bergström, S. The HBV Model: Its Structure and Applications; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 1992. [Google Scholar]
- Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 1997, 201, 272–288. [Google Scholar] [CrossRef]
- Mazvimavi, D.; Meijerink, A.M.J.; Savenije, H.H.G.; Stein, A. Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe. Phys. Chem. Earth Parts A/B/C 2005, 30, 639–647. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Norman, J.M.; Diak, G.R.; Kustas, W.P.; Mecikalski, J.R. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Hain, C.R.; Mecikalski, J.R.; Anderson, M.C. Retrieval of an available water-based soil moisture proxy from thermal infrared remote sensing. Part I: Methodology and validation. J. Hydrometeorol. 2009, 10, 665–683. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Van Dijk, A.I.J.M.; Mattersdorf, G.; Beringer, J.; Hutley, L.B.; Leuning, R.; Pipunic, R.C.; Sherman, B.S. Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. J. Hydrol. 2009, 369, 107–119. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Chen, M.; Senay, G.B.; Singh, R.K.; Verdin, J.P. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites. J. Hydrol. 2016, 536, 384–399. [Google Scholar] [CrossRef] [Green Version]
- Deksissa, T.; Ashton, P.J.; Vanrolleghem, P.A. Control options for river water quality improvement: A case study of TDS and inorganic nitrogen in the Crocodile River (South Africa). Water SA 2003, 29, 209–218. [Google Scholar] [CrossRef]
- Slaughter, A.R.; Hughes, D.A. A simple model to separately simulate point and diffuse nutrient signatures in stream flows. Hydrol. Res. 2013, 44, 538–553. [Google Scholar] [CrossRef]
- Bouwer, L.M.; Aerts, J.C.J.H.; Droogers, P.; Dolman, A.J. Detecting the long-term impacts from climate variability and increasing water consumption on runoff in the Krishna river basin (India). Hydrol. Earth Syst. Sci. 2006, 10, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.J.; Aerts, J.C.J.H.; de Moel, H.; Renssen, H. Verification of a coupled climate-hydrological model against Holocene palaeohydrological records. Glob. Planet. Chang. 2007, 57, 283–300. [Google Scholar] [CrossRef]
- Ward, P.J.; Renssen, H.; Aerts, J.; Van Balen, R.; Vandenberghe, J. Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: Impacts of long-term anthropogenic land use change and climate variability. Hydrol. Earth Syst. Sci. 2008, 12, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Bouwer, L.M.; Biggs, T.W.; Aerts, J.C.J.H. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model. Hydrol. Process. 2008, 22, 670–682. [Google Scholar] [CrossRef]
- Ward, P.J.; Renssen, H.; Aerts, J.C.J.H.; Verburg, P.H. Sensitivity of discharge and flood frequency to twenty-first century and late Holocene changes in climate and land use (River Meuse, northwest Europe). Clim. Chang. 2011, 106, 179–202. [Google Scholar] [CrossRef]
Parameter | Unit | Description | Value | Estimation Method |
---|---|---|---|---|
Ku | day | Overtop timescale | 0.5 | Recession curve Analysis |
Ksf | day | Saturation overland flow timescale | 1 | Recession curve Analysis |
Kq | day | Quickflow timescale | 5 | Recession curve Analysis |
Ks | day | Slow flow (baseflow) timescale | 100 | Recession curve Analysis |
Suini | mm | Initial storage in unsaturated zone | 20 | Calibration |
GWSini | mm | Initial ground water storage in saturated zone | 20 | Calibration |
LP | - | Reduction of potential evapotranspiration | 0.5 | Literature |
Cr | - | Unsaturated/saturated zone separation coefficient | 0–1 | Derived from slope, soil texture and land-use land-cover map [42] |
Zr | m | Rooting depth | 0.5–2.5 | Literature/Land-use land-cover map |
D | mm/d | Interception threshold | 0–4 | Literature/Land-use land-cover map |
Qc | - | Quickflow coefficient | 0–1 | Calibration/Soil Texture |
Sumax | mm | Maximum storage in unsaturated zone | 0–500 | Field capacity and rooting depth |
GWSmax | mm | Maximum ground water storage in saturated zone | 25lnGWSdem | [36] |
Cflux | mm/d | Maximum capillary rise threshold | 0–2 | [35] |
GWSmin | mm | Minimum ground water storage threshold to initiate capillary rise | (0–0.5) × GWSmax | Modified after [35] |
Land Use and Land Cover | %Total Area | D (mm/d) * | Zr (m) * |
---|---|---|---|
Forest/Woodland | 19.9% | 4 | 2.5 |
Bush/Shrub | 31.6% | 2 | 1 |
Grassland | 13.9% | 2 | 0.8 |
Plantations | 23.3% | 4 | 2.5 |
Water | 0.2% | 0 | 0.5 |
Wetlands | 0.7% | 1 | 0.5 |
Bare | 0.3% | 1 | 0.5 |
Agriculture: Rain-fed, Planted pasture, Fallow | 2.6% | 2 | 1.5 |
Agriculture: Irrigated | 5.8% | 2 | 2 |
Urban and Mines | 1.7% | 1 | 0.5 |
Soil Texture | Qc [-] |
---|---|
Clay (Cl) | 0.9 |
Sandy clay (SaCl) | 0.7 |
Clay loam (CL) | 0.8 |
Sandy clay loam (SaClLo) | 0.6 |
Sandy loam (SaLo) | 0.5 |
Run | Cflux (mm/d) | GWSmin | Description |
---|---|---|---|
53 | 0 | 0 | Model without capillary rise implemented |
60 | 1 | 0 | Model with capillary rise implemented but no GWSmin |
64 | 2 | 0.1GWSmax | Model with capillary rise implemented and GWSmin |
67 | 2 | 0.01GWSmax | Model with capillary rise implemented and GWSmin |
Bias | KGE | LogNSE | MAE | NSE | PBias | RMSE | Pearson R2 | |
---|---|---|---|---|---|---|---|---|
(m3/month) | (-) | (-) | (m3/month) | (-) | (%) | (m3/month) | (-) | |
Run53 | ||||||||
X2H010 | 22.8 | −0.29 | −0.77 | 22.8 | −2.46 | 170.9 | 28.1 | 0.83 |
X2H008 | 48.4 | −1.23 | −1.26 | 48.4 | −3.97 | 479.1 | 59.2 | 0.83 |
X2H031 | 52.1 | −0.91 | −1.66 | 52.6 | −5.72 | 269.3 | 64.3 | 0.76 |
X2H022 | 371.7 | −2.76 | −1.38 | 371.7 | −11.44 | 7299.9 | 424.5 | 0.84 |
Run60 a | ||||||||
X2H010 | −0.4 | 0.68 | na | 8.1 | 0.53 | −16.6 | 10.4 | 0.84 |
X2H008 | 14.4 | 0.32 | na | 18.8 | −0.13 | 88.9 | 28.2 | 0.82 |
X2H031 | 5.3 | 0.62 | na | 17.8 | 0.05 | 8.6 | 24.1 | 0.76 |
X2H022 | 85.6 | 0.12 | na | 102.2 | −0.46 | 186.9 | 145.3 | 0.84 |
Run64 | ||||||||
X2H010 | −4.2 | 0.67 | 0.38 | 6.7 | 0.52 | −15.4 | 10.5 | 0.77 |
X2H008 | 7.2 | 0.61 | 0.53 | 12.1 | 0.50 | 87.4 | 18.7 | 0.83 |
X2H031 | −0.8 | 0.75 | 0.58 | 10.6 | 0.52 | 10.6 | 17.1 | 0.75 |
X2H022 | 57.7 | 0.32 | 0.10 | 72.4 | 0.42 | 1829.5 | 91.6 | 0.84 |
Run67 | ||||||||
X2H010 | −8.4 | 0.22 | −6.10 | 9.6 | 0.30 | −58.9 | 12.6 | 0.79 |
X2H008 | 1.4 | 0.79 | −0.44 | 11.3 | 0.55 | −2.3 | 17.7 | 0.82 |
X2H031 | −9.8 | 0.34 | −4.14 | 13.7 | 0.37 | −49.1 | 19.7 | 0.76 |
X2H022 | 0.7 | 0.83 | 0.35 | 47.5 | 0.66 | 197.7 | 70.6 | 0.84 |
Noordkaap | Queens | Suidkaap | Kaap | |
---|---|---|---|---|
X2H010 | X2H008 | X2H031 | X2H022 | |
Mean ± Stdev | Mean ± Stdev | Mean ± Stdev | Mean ± Stdev | |
Rainfall (mm/year) | 1008.0 ± 154.1 | 1126.6 ± 181.6 | 946.3 ± 135.9 | 774.0 ± 121.6 |
FlowObs (mm/year) | 137.5 ± 66.7 | 127.4 ± 84.5 | 106.8 ± 55.0 | 61.4 ± 41.1 |
RC (%) | 13% ± 5% | 11% ± 0.1 | 11% ± 0.0 | 7% ± 4% |
Qnat (mm/year) a | 222.0 ± 64.0 | 153.0 ± 70.0 | 217.0 ± 49.0 | 106.0 ± 36.0 |
Fm53 (mm/year) | 335.7 ± 67.5 | 406.4 ± 74.4 | 316.0 ± 53.9 | 298.1 ± 48.2 |
Fm60 (mm/year) | 144.7 ± 61.9 | 210.4 ± 75.8 | 131.0 ± 49.4 | 117.2 ± 40.5 |
Fm64 (mm/year) | 113.9 ± 40.5 | 169.1 ± 59.7 | 106.9 ± 33.1 | 99.6 ± 25.6 |
Fm67 (mm/year) | 78.9 ± 45.3 | 135.7 ± 64.2 | 71.3 ± 36.4 | 63.6 ± 28.1 |
PminFlowOb (mm/year) | 870.5 ± 112.8 | 999.2 ± 121.5 | 839.5 ± 94.7 | 712.7 ± 85.8 |
ETfao (mm/year) | 1250.7 ± 69.2 | 1221.3 ± 93.6 | 1225.0 ± 89.5 | 1235.3 ± 83.9 |
ETm53 (mm/year) | 672.0 ± 93.7 | 717.9 ± 109.3 | 660.1 ± 88.5 | 503.7 ± 72.5 |
ETm60 (mm/year) | 864.2 ± 98.0 | 915.3 ± 109.8 | 838.2 ± 93.3 | 681.7 ± 83.8 |
ETm64 (mm/year) | 894.7 ± 120.0 | 956.4 ± 126.1 | 853.7 ± 108.3 | 691.9 ± 99.3 |
ETm67 (mm/year) | 930.0 ± 114.8 | 990.1 ± 121.4 | 890.1 ± 106.1 | 728.9 ± 97.7 |
ETal (mm/year) | 1100.9 ± 54.3 | 1079.6 ± 55.3 | 884.7 ± 41.7 | 861.4 ± 35.8 |
ETcm (mm/year) | 1127.4 ± 269.8 | 1142.6 ± 56.3 | 1005.0 ± 50.9 | 831.2 ± 181.3 |
ETss (mm/year) | 788.5 ± 35.9 | 733.8 ± 59.8 | 608.2 ± 68.4 | 608.4 ± 53.9 |
Q01 | Q05 | Q50 | Q75 | Q90 | Q95 | Q99 | Qmean | SlopeFDC | ||
---|---|---|---|---|---|---|---|---|---|---|
m3/s | m3/s | m3/s | m3/s | m3/s | m3/s | m3/s | m3/s | (-) | ||
Noordkaap | FlowObs | 3.12 | 1.60 | 0.40 | 0.24 | 0.16 | 0.12 | 0.09 | 0.59 | 1.48 |
Fm53 | 5.68 | 3.03 | 1.12 | 0.66 | 0.47 | 0.41 | 0.30 | 1.34 | 1.51 | |
Fm60 | 2.96 | 1.68 | 0.38 | 0.02 | 0.00 | 0.00 | 0.00 | 0.58 | 3.33 | |
Fm64 | 2.04 | 1.32 | 0.27 | 0.18 | 0.12 | 0.10 | 0.07 | 0.46 | 1.74 | |
Fm67 | 1.92 | 1.23 | 0.10 | 0.01 | 0.01 | 0.01 | 0.01 | 0.32 | 2.97 | |
Queens | FlowObs | 5.94 | 2.49 | 0.32 | 0.16 | 0.07 | 0.05 | 0.03 | 0.73 | 1.55 |
Fm53 | 12.27 | 6.49 | 1.76 | 1.03 | 0.75 | 0.64 | 0.49 | 2.32 | 1.32 | |
Fm60 | 8.11 | 3.49 | 0.76 | 0.09 | 0.00 | 0.00 | 0.00 | 1.20 | 2.98 | |
Fm64 | 5.89 | 2.69 | 0.48 | 0.29 | 0.20 | 0.16 | 0.12 | 0.96 | 2.01 | |
Fm67 | 5.54 | 2.58 | 0.26 | 0.02 | 0.02 | 0.01 | 0.01 | 0.77 | 3.14 | |
Suidkaap | FlowObs | 5.71 | 2.57 | 0.60 | 0.34 | 0.23 | 0.18 | 0.11 | 0.91 | 1.44 |
Fm53 | 12.21 | 6.22 | 2.18 | 1.26 | 0.91 | 0.78 | 0.58 | 2.62 | 1.50 | |
Fm60 | 5.93 | 3.19 | 0.69 | 0.04 | 0.00 | 0.00 | 0.00 | 1.09 | 3.29 | |
Fm64 | 4.05 | 2.56 | 0.55 | 0.36 | 0.24 | 0.19 | 0.13 | 0.89 | 1.62 | |
Fm67 | 3.75 | 2.34 | 0.17 | 0.03 | 0.02 | 0.02 | 0.01 | 0.59 | 2.79 | |
Kaap | FlowObs | 25.06 | 12.20 | 1.55 | 0.57 | 0.12 | 0.04 | 0.00 | 3.28 | 1.72 |
Fm53 | 65.57 | 36.15 | 13.10 | 7.52 | 5.47 | 4.74 | 3.52 | 15.49 | 1.53 | |
Fm60 | 32.04 | 18.76 | 3.76 | 0.30 | 0.00 | 0.00 | 0.00 | 6.09 | 3.21 | |
Fm64 | 22.61 | 14.67 | 3.35 | 2.18 | 1.48 | 1.14 | 0.87 | 5.18 | 1.62 | |
Fm67 | 20.46 | 13.06 | 1.09 | 0.15 | 0.11 | 0.09 | 0.06 | 3.30 | 2.77 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraiva Okello, A.M.L.; Masih, I.; Uhlenbrook, S.; Jewitt, G.P.W.; Van der Zaag, P. Improved Process Representation in the Simulation of the Hydrology of a Meso-Scale Semi-Arid Catchment. Water 2018, 10, 1549. https://doi.org/10.3390/w10111549
Saraiva Okello AML, Masih I, Uhlenbrook S, Jewitt GPW, Van der Zaag P. Improved Process Representation in the Simulation of the Hydrology of a Meso-Scale Semi-Arid Catchment. Water. 2018; 10(11):1549. https://doi.org/10.3390/w10111549
Chicago/Turabian StyleSaraiva Okello, Aline M. L., Ilyas Masih, Stefan Uhlenbrook, Graham P. W. Jewitt, and Pieter Van der Zaag. 2018. "Improved Process Representation in the Simulation of the Hydrology of a Meso-Scale Semi-Arid Catchment" Water 10, no. 11: 1549. https://doi.org/10.3390/w10111549
APA StyleSaraiva Okello, A. M. L., Masih, I., Uhlenbrook, S., Jewitt, G. P. W., & Van der Zaag, P. (2018). Improved Process Representation in the Simulation of the Hydrology of a Meso-Scale Semi-Arid Catchment. Water, 10(11), 1549. https://doi.org/10.3390/w10111549