Multi-Water Source Joint Scheduling Model Using a Refined Water Supply Network: Case Study of Tianjin
Abstract
:1. Introduction
2. Methods
2.1. Hierarchical Structure Analysis of the WSSU Distribution System
2.2. Objective Functions
2.2.1. The Upper Layer: Social Benefit Target
2.2.2. The Upper Layer: Economic Benefit Target
2.2.3. The Lower Layer: Water Supply Cost Target
2.2.4. The Lower Layer: Social Equity Target
2.3. Constraints
2.4. Objective Function Processing
2.5. Multi-Objective Weight Processing and Solution
3. Case Study
3.1. Network Diagram of Water Supply System
3.2. Water Supply Rules
3.2.1. Users’ Available Water Sources
3.2.2. Rules of Water Source Priority Utilization
3.2.3. Water Demand Forecasting
3.2.4. Water Supply Forecasting
3.2.5. Simulation Scheme Setting
3.2.6. Objective Function
3.2.7. Multi-Target Weight Processing
3.2.8. Calculation Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, J.W.; Da, H.Q. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Chang. Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Álvarez-García, J.; de la Cruz del Río-Rama, M. Sustainable Water Resources Management: A Bibliometric Overview. Water 2018, 10, 1191. [Google Scholar] [CrossRef]
- Higgins, A.; Archer, A. A stochastic non-linear programming model for a multi-period water resource allocation with multiple objectives. Water Resour. Manag. 2008, 22, 1445–1460. [Google Scholar] [CrossRef]
- Gu, H. Inter-basin water transfer and sustainable development. J. Beijing Norm. Univ. 2009, 45, 473–477. (In Chinese) [Google Scholar]
- Paton, F.L.; Dandy, G.C.; Maier, H.R. Integrated Framework for Assessing urban Water Supply Security of Systems with Non-Traditional Sources under Climate Change; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Dolnicar, S.; Schäfer, A.I. Desalinated versus recycled water: Public perceptions and profiles of the accepters. J. Environ. Manag. 2009, 90, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Mariño, M.A.; Loaicigab, H.A. Quadratic model for reservoir management: Application to the Central Valley Project. Water Resour. Res. 1985, 21, 631–641. [Google Scholar] [CrossRef]
- Bergmann, M. The Snowy Mountains Hydro-Electric Scheme: How Did It Manage without an EIA? Australian National University: Canberra, Australia, 1999. [Google Scholar]
- Becker, N.; Easter, K.W. Water diversions in the great lakes basin analyzed in a game theory framework. Water Resour. Res. 1995, 9, 221–242. [Google Scholar] [CrossRef]
- Berkoff, J. China: The South–North Water Transfer Project—Is it justified? Water Policy 2003, 5, 1–28. [Google Scholar] [CrossRef]
- Yan, H.; Shi, G.X. Modeling multisource multiuser water resources allocation. Water Resour. Manag. 2008, 22, 911–923. [Google Scholar]
- Huang, G.H.; Chang, N. The perspectives of environmental informatics and systems analysis. J. Environ. Inform. 2003, 1, 1–7. [Google Scholar] [CrossRef]
- Wong, H.S.; Sun, N.Z.; Yeh, W.W.G. Optimization of conjunctive use of surface water and groundwater with water quality constraints. In Proceeding of the Annual Water Resources Planning and Management Conference, Houston, TX, USA, 6–9 April 1997. [Google Scholar]
- Percia, C.; Oron, G.; Mehrez, A. Optimal Operation of Regional System with Diverse Water Quality Sources. J. Water Resour. Plan. Manag. 1998, 123, 105–115. [Google Scholar] [CrossRef]
- Zhong, P.; Wang, H.; Liu, J. Optimal dispatching model for Shenzhen water resources system. J. Hehai Univ. Nat. Sci. 2003, 31, 616–620. (In Chinese) [Google Scholar]
- Ma, W.F.; Zhao, X.H.; Wang, H.Y. Fuzzy optimal allocation of reclaimed and natural water resources for agricultural irrigation. J. Agro-Environ. Sci. 2004, 23, 770–773. [Google Scholar]
- Kilic, M.; Anac, S. Multi-objective planning model for large scale irrigation systems: Method and application. Water Resour. Manag. 2010, 24, 3173–3194. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110–111, 151–166. [Google Scholar] [CrossRef]
- Roozbahani, R.; Abbasi, B.; Schreider, S. A multi-objective approach for transboundary river water allocation. Water Resour. Manag. 2014, 28, 5447–5463. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Tian, F.Q.; Hu, Y.C. Joint operation model of multiple water sources in Beijing. J. Hydraul. Eng. 2014, 45, 844–849. (In Chinese) [Google Scholar]
- Yu, B.; Liang, G.H.; He, B. Modeling of joint operation for urban water-supply system with multi-water sources and its application. Adv. Water Sci. 2015, 26, 874–884. (In Chinese) [Google Scholar]
- Roozbahani, R.; Schreider, S.; Abbasi, B. Optimal water allocation through a multi-objective compromise between environmental, social, and economic preferences. Environ. Model. Softw. 2015, 64, 18–30. [Google Scholar] [CrossRef]
- Ostfeld, A.; Asce, M. Water distribution systems connectivity analysis. J. Water Resour. Plan. Manag. 2005, 131, 58–66. [Google Scholar] [CrossRef]
- Xu, J.P. Bilevel optimization of regional water resources allocation problem under fuzzy random environment. J. Water Resour. Plan. Manag. 2013. [Google Scholar] [CrossRef]
- Hu, Z.N. Integrating equality and stability to resolve water allocation issues with a multiobjective bilevel programming model. J. Water Resour. Plan. Manag. 2016. [Google Scholar] [CrossRef]
- Han, Q.; Tan, G.M.; Fu, X. Water Resource Optimal Allocation Based on Multi-Agent Game Theory of HanJiang River Basin. Water 2018, 10, 1184. [Google Scholar] [CrossRef]
- Chong, F.R. Multiobjective stochastic fractional goal programming model for water resources optimal allocation among industries. J. Water Resour. Plan. Manag. 2016. [Google Scholar] [CrossRef]
- Tianjin Municipal Bureau of Statistics. Tianjin’s Statistical Yearbook; Tianjin Municipal Bureau of Statistics: Tianjin, China, 2015. (In Chinese) [Google Scholar]
- Tianjin Development and Reform Commission. Tianjin’s South to North Water Transfer Project Planning; Tianjin Development and Reform Commission: Tianjin, China, 2005. (In Chinese) [Google Scholar]
- Loucks, D.P.; Gladwell, J.S. Sustainability Criteria for Water Resources System; Cambridge University Press: Cambridge, UK, 1999; Volume 154. [Google Scholar]
- Yuan, G.Y. Introduction to Sustainable Development; China Environmental Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Qian, Y.; Liu, C.M. China’s sustainable development of water resources strategy report set. In The Fifth Volume: Sustainable Development and Utilization of Urban Water Resources in China; China Water Power Press: Beijing, China, 2002; Volume 17, pp. 112–118. (In Chinese) [Google Scholar]
- Ye, J.H. Analysis on Tianjin Urban Demand and Water Supply; Tianjin University: Tianjin, China, 2015. (In Chinese) [Google Scholar]
- Lavric, V.; Lancu, P.; Pleşu, V. Optimal water system topology through genetic algorithm under multiple contaminated-water sources constraint. Comput. Aided Chem. Eng. 2004, 18, 433–438. [Google Scholar]
- Wang, L.T. Detailed Water Allocation of Urban Complex Water Utilization System—Case Study in New District of Tianjin; China Institute of Water Resource and Hydropower Research (IWHR): Beijing, China, 2015. (In Chinese) [Google Scholar]
Water Users | Surface Water | Groundwater | Groundwater Source Field | Reclaimed Water | Desalinated Seawater | Luanhe River Water | River Water |
---|---|---|---|---|---|---|---|
Life | √ | √ | √ | √ | √ | ||
Industry | √ | √ | √ | √ | √ | ||
Agriculture | √ | √ | √ | ||||
Ecology | √ | √ | √ | √ |
Water Users Administrative Divisions | Domestic Water Demand | Industrial Water Demand | Agricultural Water Demand | Ecological Water Demand | Total | |
---|---|---|---|---|---|---|
Zhongxincheng Area | Zhongxin Chengqu | 5.46 | 3.06 | 1.17 | 2.89 | 12.58 |
Suburban Area | Jixian | 0.46 | 0.46 | 0.73 | 0.05 | 1.7 |
Baodi | 0.47 | 0.18 | 2.63 | 0.1 | 3.38 | |
Wuqing | 0.84 | 0.3 | 2.16 | 0.1 | 3.4 | |
Ninghe | 0.36 | 0.37 | 1.16 | 0.46 | 2.35 | |
Jinghai | 0.54 | 0.28 | 0.5 | 0.05 | 1.37 | |
Binhaixinqu Area | Beibu | 0.63 | 0.3 | 0.12 | 0.23 | 1.28 |
Xibu | 0.63 | 0.33 | 0.12 | 0.26 | 1.34 | |
Nanbu | 0.87 | 1.81 | 0.12 | 0.24 | 3.04 | |
Binhaibei | 1.55 | 1.52 | 0.12 | 0.37 | 3.56 | |
Binhainan | 0.38 | 0.82 | 0.12 | 0.11 | 1.43 | |
City | 12.19 | 9.43 | 8.95 | 4.86 | 35.43 |
Water Sources Administrative Divisions | Surface Water | Groundwater | Groundwater Source Field | Reclaimed Water | Desalinated Seawater | Luanhe River Water | River Water | |
---|---|---|---|---|---|---|---|---|
Zhongxincheng Area | Zhongxin chengqu | 1.75 | 1.86 | |||||
Suburban Area | Jixian | 2.24 | 0.16 | 0.45 | 0.16 | |||
Baodi | 1.02 | 0.1 | 0.12 | |||||
Wuqing | 1.02 | 0.13 | 0.07 | 0.21 | ||||
Ninghe | 0.92 | 0.1 | 0.13 | |||||
Jinghai | 0.9 | 0.11 | 0.15 | |||||
Binhaixinqu Area | Beibu | 0.35 | 0.2 | 1.58 | ||||
Xibu | 0.21 | |||||||
Nanbu | 0.66 | 0.56 | 1.1 | |||||
Binhaibei | 0.51 | 0.66 | ||||||
Binhainan | 0.25 | 0.3 | ||||||
City | 9.37 | 0.6 | 0.52 | 4.51 | 2.98 | 9.06 | 12.16 | |
Total | 17.98 | 21.22 |
Category | Calculation Formula |
---|---|
Industrial benefit coefficient | = 70 yuan/m³ |
Domestic benefit coefficient | = 104 yuan/m³ |
Agricultural benefit coefficient | = 50 yuan/m³ |
Ecological benefit coefficient | = 84 yuan/m³ |
Administrative Division | Category | Luanhe River Water | Groundwater | Surface Water | Reclaimed Water | Groundwater Source Field | Desalinated Seawater | Total | Water Demand | Water Shortage |
---|---|---|---|---|---|---|---|---|---|---|
Baodi | Life | 0.37 | 0.1 | 0 | 0 | 0 | 0 | 0.47 | 0.47 | 0 |
Industry | 0.16 | 0 | 0 | 0.02 | 0 | 0 | 0.18 | 0.18 | 0 | |
Agriculture | 0.0175 | 0 | 1.02 | 0 | 0 | 0 | 1.0375 | 2.63 | 1.5925 | |
Ecology | 0 | 0 | 0 | 0.1 | 0 | 0 | 0.1 | 0.1 | 0 | |
Total | 0.5475 | 0.1 | 1.02 | 0.12 | 0 | 0 | 1.7875 | 3.38 | 1.5925 | |
Wuqing | Life | 0.64 | 0.13 | 0 | 0 | 0.07 | 0 | 0.84 | 0.84 | 0 |
Industry | 0.19 | 0 | 0 | 0.11 | 0 | 0 | 0.3 | 0.3 | 0 | |
Agriculture | 0.0825 | 0 | 1.02 | 0 | 0 | 0 | 1.1025 | 2.16 | 1.0575 | |
Ecology | 0 | 0 | 0 | 0.1 | 0 | 0 | 0.1 | 0.1 | 0 | |
Total | 0.9125 | 0.13 | 1.02 | 0.21 | 0.07 | 0 | 2.3425 | 3.4 | 1.0575 | |
Ninghe | Life | 0.26 | 0.1 | 0 | 0 | 0 | 0 | 0.36 | 0.36 | 0 |
Industry | 0.37 | 0 | 0 | 0 | 0 | 0 | 0.37 | 0.37 | 0 | |
Agriculture | 0.135 | 0 | 0.92 | 0 | 0 | 0 | 1.055 | 1.16 | 0.105 | |
Ecology | 0.33 | 0 | 0 | 0.13 | 0 | 0 | 0.46 | 0.46 | 0 | |
Total | 1.095 | 0.1 | 0.92 | 0.13 | 0 | 0 | 2.245 | 2.35 | 0.105 | |
Beibu | Life | 0.365 | 0 | 0.265 | 0 | 0 | 0 | 0.63 | 0.63 | 0 |
Industry | 0 | 0 | 0 | 0 | 0 | 0.3 | 0.3 | 0.3 | 0 | |
Agriculture | 0 | 0 | 0.055 | 0 | 0 | 0 | 0.055 | 0.12 | 0.065 | |
Ecology | 0 | 0 | 0.03 | 0.2 | 0 | 0 | 0.23 | 0.23 | 0 | |
Total | 0.365 | 0 | 0.35 | 0.2 | 0 | 0.3 | 1.215 | 1.28 | 0.065 | |
Total | 2.82 |
Category | Amount of Use | Available Amount | Residual Amount |
---|---|---|---|
Luanhe River water | 7.5 | 7.5 | 0 |
River water | 9.25 | 12 | 2.75 |
Surface water | 8.288 | 9.37 | 1.082 |
Groundwater | 0.6 | 0.6 | 0 |
Reclaimed water | 4.51 | 4.51 | 0 |
Groundwater source field | 0.07 | 0.52 | 0.45 |
Desalinated seawater | 2.39 | 2.95 | 0.56 |
Total | 32.608 | 37.45 | 4.842 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yang, J.; Wan, Z.; Yi, Y. Multi-Water Source Joint Scheduling Model Using a Refined Water Supply Network: Case Study of Tianjin. Water 2018, 10, 1580. https://doi.org/10.3390/w10111580
Zhang S, Yang J, Wan Z, Yi Y. Multi-Water Source Joint Scheduling Model Using a Refined Water Supply Network: Case Study of Tianjin. Water. 2018; 10(11):1580. https://doi.org/10.3390/w10111580
Chicago/Turabian StyleZhang, Shanghong, Jiasheng Yang, Zhongyu Wan, and Yujun Yi. 2018. "Multi-Water Source Joint Scheduling Model Using a Refined Water Supply Network: Case Study of Tianjin" Water 10, no. 11: 1580. https://doi.org/10.3390/w10111580
APA StyleZhang, S., Yang, J., Wan, Z., & Yi, Y. (2018). Multi-Water Source Joint Scheduling Model Using a Refined Water Supply Network: Case Study of Tianjin. Water, 10(11), 1580. https://doi.org/10.3390/w10111580