Assessing the Impacts of Population Growth and Climate Change on Performance of Water Use Systems and Water Allocation in Kano River Basin, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Methodology
2.2.1. Sefficiency (Sustainable Efficiency)
Xq = WqX * X
Xs = WsX * X
WsX = WbX * WqX
2.2.2. Data Collection
2.2.3. Options to be Evaluated
Water Flow Paths (WaPs) Quantities
Setting Water Quality and Beneficial Weights
2.2.4. Developing Case Scenarios and Sensitivity Analyses
3. Results and Discussion
3.1. Sefficiency Results Based on Population Growth
3.1.1. Sefficiency for M1P
3.1.2. Sefficiency for M2P
3.2. Sefficiency Results Based on Climate Change
3.2.1. Sefficiency for M1C
3.2.2. Sefficiency for M2C
3.3. Sefficiency Results Based on Population Growth and Climate Change Impact
3.3.1. Sefficiency for M1B
3.3.2. Sefficiency for M2B
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Okello, C.; Tomasello, B.; Greggio, N.; Wambiji, N.; Antonellini, M. Impact of population growth and climate change on the freshwater resources of Lamu Island, Kenya. Water 2015, 7, 1264–1290. [Google Scholar] [CrossRef]
- Kifle, A.B.; Mengistu, T.G.; Stoffberg, G.H.; Tadesse, T. Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia. Clim. Risk Manag. 2017, 18, 21–33. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Population Prospects The 2017 Revision Key Findings and Advance Tables. In World Popul Prospect 2017; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2017; pp. 1–46. [Google Scholar] [CrossRef]
- Odjugo, P. General overview of climate change impacts in Nigeria. J. Hum. Ecol. 2010, 29, 47–55. [Google Scholar] [CrossRef]
- Tambo, J.A.; Abdoulaye, T. Smallholder farmers’ perceptions of and adaptations to climate change in the Nigerian savanna. Reg. Environ. Chang. 2013, 13, 375–388. [Google Scholar] [CrossRef]
- Loucks, D.P. Managing Water as a Critical Component of a Changing World. Water Resour. Manag. 2017, 1, 2905–2916. [Google Scholar] [CrossRef]
- Masih, I.; Ahmad, M.; Uhlenbrook, S.; Turral, H.; Karimi, P. Analysing streamflow variability and water allocation for sustainable management of water resources in the semi-arid Karkheh river basin, Iran. Phys. Chem. Earth 2009, 34, 329–340. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Adaptation Strategy to Mitigate the Impact of Climate Change on Water Resources in Arid and Semi-Arid Regions: A Case Study. Water Resour. Manag. 2017, 31, 3557–3573. [Google Scholar] [CrossRef]
- Goes, B.J.M. Effects of river regulation on aquatic macrophyte growth and floods in the Hadejia-Nguru wetlands and flow in the Yobe River, northern Nigeria; implications for future water management. River Res. Appl. 2002, 18, 81–95. [Google Scholar] [CrossRef]
- Ahmad, M.T.; Haie, N.; Yen, H.; Tuqan, N.A.S. Sefficiency of a Water Use System: The Case of Kano River Irrigation Project, Nigeria. Int. J. Civ. Eng. 2018, 16, 929–939. [Google Scholar] [CrossRef]
- Abou Kheira, A.A. Comparative assessment of new design criteria for irrigation improvement in Egypt. Water Resour. Manag. 2009, 23, 2317–2342. [Google Scholar] [CrossRef]
- Ghahroodi, E.M.; Noory, H.; Liaghat, A.M. Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran). Agric. Water Manag. 2015, 148, 189–195. [Google Scholar] [CrossRef]
- Angella, G.; García Vila, M.; López, J.M.; Barraza, G.; Salgado, R.; Prieto Angueira, S.; Tomsic, P.; Fereres, E. Quantifying yield and water productivity gaps in an irrigation district under rotational delivery schedule. Irrig. Sci. 2016, 34, 71–83. [Google Scholar] [CrossRef]
- Merchán, D.; Causapé, J.; Abrahão, R.; García-Garizábal, I. Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. I: Water balances and irrigation performance. Agric. Water Manag. 2015, 158, 277–287. [Google Scholar] [CrossRef]
- García-Bolaños, M.; Borgia, C.; Poblador, N.; Dia, M.; Seyid, O.M.V.; Mateos, L. Performance assessment of small irrigation schemes along the Mauritanian banks of the Senegal River. Agric. Water Manag. 2011, 98, 1141–1152. [Google Scholar] [CrossRef] [Green Version]
- García-Garizábal, I.; Causapé, J.; Abrahao, R. Application of the irrigation land environmental evaluation tool for flood irrigation management and evaluation of water use. Catena 2011, 87, 260–267. [Google Scholar] [CrossRef]
- Barros, R.; Isidoro, D.; Aragüés, R. Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance. Agric. Water Manag. 2011, 98, 1569–1576. [Google Scholar] [CrossRef] [Green Version]
- Van Halsema, G.; Lencha, B.K.; Assefa, M.; Hengsdijk, H.; Wesseler, J. Performance assessment of smallholder irrigation in the central rift valley of Ethiopia. Irrig. Drain. 2011, 60, 622–634. [Google Scholar] [CrossRef]
- Mateos, L.; Lozano, D.; Baghil, A.B.O.; Diallo, O.A.; Gómez-Macpherson, H.; Comas, J.; Connor, D. Irrigation performance before and after rehabilitation of a representative, small irrigation scheme besides the Senegal River, Mauritania. Agric. Water Manag. 2010, 97, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Kifle, M.; Gebremicael, T.G.; Girmay, A.; Gebremedihin, T. Effect of surge flow and alternate irrigation on the irrigation efficiency and water productivity of onion in the semi-arid areas of North Ethiopia. Agric. Water Manag. 2017, 187, 69–76. [Google Scholar] [CrossRef]
- Borgia, C.; García-Bolaños, M.; Li, T.; Gómez-Macpherson, H.; Comas, J.; Connor, D.; Mateos, L. Benchmarking for performance assessment of small and large irrigation schemes along the Senegal Valley in Mauritania. Agric. Water Manag. 2013, 121, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Longxia, Q.; Wang, H.; Zhang, K. Evaluation Criteria and Model for Risk Between Water Supply and Water Demand and its Application in Beijing. Water Resour. Manag. 2014, 28, 4433–4447. [Google Scholar] [CrossRef]
- Haro, D.; Solera, A.; Paredes, J.; Andreu, J. Methodology for Drought Risk Assessment in Within-year Regulated Reservoir Systems. Application to the Orbigo River System (Spain). Water Resour. Manag. 2014, 28, 3801–3814. [Google Scholar] [CrossRef] [Green Version]
- Preziosi, E.; Del Bon, A.; Romano, E.; Petrangeli, A.B.; Casadei, S. Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy). Water Resour. Manag. 2013, 27, 4655–4678. [Google Scholar] [CrossRef]
- Akhbari, M.; Grigg, N.S. A Framework for an Agent-Based Model to Manage Water Resources Conflicts. Water Resour. Manag. 2013, 27, 4039–4405. [Google Scholar] [CrossRef]
- Haie, N.; Keller, A.A. Macro, Meso, and Micro-Efficiencies in Water Resources Management: A New Framework Using Water Balance. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 235–243. [Google Scholar] [CrossRef]
- De Fraiture, C.; Wichelns, D. Satisfying future water demands for agriculture. Agric. Water Manag. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- UN-Water. WWDR4: Managing Water under Uncertainty and Risk; UN-Water: Geneva, Switzerland, 2012; Volume 1. [Google Scholar]
- UNEP. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication—A Synthesis for Policy Makers; UNEP: Nairobi, Kenya, 2011; pp. 1–34. [Google Scholar]
- Burt, C.M.; Clemmens, A.J.; Strelkoff, T.S.; Hardy, L.; Howell, T.A.; Eisenhauer, D.E. Irrigation performance measures: Efficiency and uniformity. J. Irrig. Drain Eng. 1997, 123, 423–442. [Google Scholar] [CrossRef]
- Labadie, J.W. Optimal Operation of Multireservoir Systems: State-of-the-Art Review. J. Water Resour. Plan Manag. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- Wang, Y.J.; Qin, D.H. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Chang. Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Simonovic, S.P. Bringing Future Climatic Change into Water Resources Management Practice Today. Water Resour. Manag. 2017, 31, 2933–2950. [Google Scholar] [CrossRef]
- Pierleoni, A.; Camici, S.; Brocca, L.; Moramarco, T.; Casadei, S. Climate change and decision support systems for water resource management. Procedia Eng. 2014, 70, 1324–1333. [Google Scholar] [CrossRef]
- Narsimlu, B.; Gosain, A.K.; Chahar, B.R. Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model. Water Resour. Manag. 2013, 27, 3647–3662. [Google Scholar] [CrossRef]
- Veijalainen, N.; Dubrovin, T.; Marttunen, M.; Vehviläinen, B. Climate Change Impacts on Water Resources and Lake Regulation in the Vuoksi Watershed in Finland. Water Resour. Manag. 2010, 24, 3437–3459. [Google Scholar] [CrossRef]
- Bichi, M.H.; Anyata, B.U. Industrial waste pollution in the Kano river basin. Environ. Manag. Heal. 1999, 10, 112–116. [Google Scholar] [CrossRef]
- Mohammed, M.; Abdulhamid, A.; Badamasi, M.; Ahmed, M. Rainfall Dynamics and Climate Change in Kano, Nigeria. J. Sci. Res. Rep. 2015, 7, 386–395. [Google Scholar] [CrossRef]
- Haie, N.; Keller, A.A. Macro, meso, and micro-efficiencies and terminologies in water resources management: A look at urban and agricultural differences. Water Int. 2014, 39, 35–48. [Google Scholar] [CrossRef]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Swennenhuis, J. CROPWAT 8.0. 2010. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 10 January 2016).
- IUCN-HNWCP. Water Management Options for the Hadejia-Jama’are-Yobe River Basin, Northern Nigeria; IUCN Wetlands Programme Newsletter: Abuja, Nigeria, 1999; pp. 8–11. [Google Scholar]
- Goes, B.J.; Zabudum, A.N. Hydrology of the Hadejia–Jama’are–Yobe River Basin 1996/7 and 1997/8; IUCN–The World Conservation Union: Abuja, Nigeria, 1998. [Google Scholar]
- Oyebande, L. Effects of reservoir operation on the hydrological regime and water availability in northern Nigeria. In Man´s Influence on Freshwater Ecosystems and Water Use; IAHS Publishing: Edinburgh, UK, 1995; p. 230. [Google Scholar]
- Heydari, M.M.; Heydari, M. Evaluation of pan coefficient equations for estimating reference crop evapotranspiration in the arid region. Arch. Agron. Soil Sci. 2014, 60, 715–731. [Google Scholar] [CrossRef]
- Mara, D. Domestic Wastewater Treatment in Developing Countries; Earthscan: London, UK, 2004; p. 74. [Google Scholar] [CrossRef]
- Oyebande, L. Streamflow Regime Change and Ecological Response in the Lake Chad Basin in Nigeria; IAHS Publishing: Edinburgh, UK, 2001; pp. 101–112. [Google Scholar]
- National Population Commission. 2006 Population and Housing Census of the Federal Republic of Nigeria Priority Tables (LGA) (Volume II): Housing Characteristics and Amenities Table; National Population Commission: Abuja, Nigeria, 2010. Available online: http://population.gov.ng/core-activities/surveys/dataset/2006-phc-priority-tables/ (accessed on 22 November 2017).
- United Nations Department of Economic and Social Affairs. The World’s Cities in 2016: Data Booklet; United Nations Department of Economic and Social Affairs: Quito, Ecuador, 2016; p. 29. [Google Scholar] [CrossRef]
- Parkman. Greater Kano Water Feasibility Study; Final Report Volume 1—Main Report; Parkman: Kano, Nigeria, 2000. [Google Scholar]
- Grijsen, J.G.; Brown, C.; Tarhule, A.; Ghile, A.B.; Taner, Ü.; Talbi-Jordan, A.; Doffou, H.N.; Guero, A.; Dessouassi, R.Y.; Kone, S.; et al. Climate Risk Assessment for Water Resources Development in the Niger River Basin Part I: Context and Climate Projections. Clim. Var. 2013, 37–56. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the conservative behavior of biomass water productivity. Irrig. Sci. 2007, 25, 189–207. [Google Scholar] [CrossRef]
Flow Component | Volume Flow Rate Q (Mm3/year) |
---|---|
Irrigation canal to Ruwan Kanya Reservoir | 618.11 |
Inflow to Ruwan Kanya Reservoir | 400.51 |
Spill from Ruwan Kanya Reservoir to Kano River | 85.15 |
Outflow from KRIP into Hadejia River | 245.98 |
Water usage by KRIP & evaporation Ruwan Kanya Reservoir | 286.98 |
Kano River near Bagauda dam, downstream | 302.75 |
Smaller Tiga outlets and by-pass outlet from irrigation canal | 217.60 |
Total releases from Tiga dam | 835.70 |
Releases from Tiga dam in Hadejia River | 549.73 |
Consumer Demand | 2017 | 2025 | 2035 | 2050 |
---|---|---|---|---|
Demand (Mm3) | Estimated Demand (Mm3) | Estimated Demand (Mm3) | Estimated Demand (Mm3) | |
low density | 8.14 | 10.72 | 16.80 | 28.15 |
medium density | 6.79 | 12.50 | 22.68 | 42.22 |
high density | 33.18 | 61.14 | 110.86 | 206.41 |
Standpipes | 3.65 | 3.65 | 3.65 | 7.3 |
Total Domestic | 51.76 | 88.02 | 153.99 | 283.97 |
Industries (25% domestic) | 12.94 | 22.01 | 38.51 | 71.18 |
Institutions (10% domestic) | 5.18 | 8.76 | 15.33 | 28.47 |
Total excluding unaccounted for water | 69.87 | 118.99 | 208.05 | 383.62 |
% of unaccounted for water | 54% | 54% | 33% | 33% |
Total including losses | 107.68 | 182.87 | 276.31 | 509.91 |
Year | Temperature | Temperature | Precipitation | Precipitation | ET | ET |
---|---|---|---|---|---|---|
Change % | °C | Change % | (mm) | % Change | (mm) | |
2017, ref | 0 | 27.9 | 0 | 884.00 | 0 | 1995 |
2025 | 1 | 28.2 | 0.82 | 891.29 | 1.3 | 2020 |
2035 | 2 | 28.6 | 1.06 | 893.35 | 2.9 | 2052 |
2050 | 4 | 29.1 | 1.41 | 896.45 | 5.3 | 2100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.T.; Haie, N. Assessing the Impacts of Population Growth and Climate Change on Performance of Water Use Systems and Water Allocation in Kano River Basin, Nigeria. Water 2018, 10, 1766. https://doi.org/10.3390/w10121766
Ahmad MT, Haie N. Assessing the Impacts of Population Growth and Climate Change on Performance of Water Use Systems and Water Allocation in Kano River Basin, Nigeria. Water. 2018; 10(12):1766. https://doi.org/10.3390/w10121766
Chicago/Turabian StyleAhmad, Muhammad Tajuri, and Naim Haie. 2018. "Assessing the Impacts of Population Growth and Climate Change on Performance of Water Use Systems and Water Allocation in Kano River Basin, Nigeria" Water 10, no. 12: 1766. https://doi.org/10.3390/w10121766
APA StyleAhmad, M. T., & Haie, N. (2018). Assessing the Impacts of Population Growth and Climate Change on Performance of Water Use Systems and Water Allocation in Kano River Basin, Nigeria. Water, 10(12), 1766. https://doi.org/10.3390/w10121766