Permeable Pavements Life Cycle Assessment: A Literature Review
Abstract
:1. Introduction
2. Permeable Pavements
2.1. Definition
2.2. Permeability, Infiltration and Quality of Infiltrated Stormwater
2.3. Application of Stormwater Collected from Permeable Pavements for Non-Potable Uses in Buildings
3. Life Cycle Assessment
3.1. Pavements Life Cycle Assessment
3.2. Permeable Pavements Life Cycle Assessment
3.3. Life Cycle Cost Analysis
3.4. Final Remarks
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Wasko, C.; Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci. 2015, 8, 527–529. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Simunek, J.; Piro, P. A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. J. Hydrol. 2016, 540, 1146–1161. [Google Scholar] [CrossRef] [Green Version]
- Scholz, M.; Grabowiecki, P. Review of permeable pavement systems. Build Environ. 2007, 42, 3830–3836. [Google Scholar] [CrossRef]
- Ball, J.E.; Rankin, K. The hydrological performance of a permeable pavement. Urban Water J. 2010, 7, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Pagotto, C.; Legret, M.; Le Cloirec, P. Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement. Water Res. 2000, 34, 4446–4454. [Google Scholar] [CrossRef]
- Brattebo, B.O.; Booth, D.B. Long-term stormwater quantity and quality performance of permeable pavement systems. Water Res. 2003, 37, 4369–4376. [Google Scholar] [CrossRef]
- Maiolo, M.; Carini, M.; Capano, G.; Piro, P. Synthetic sustainability index (SSI) based on life cycle assessment approach of low impact development in the Mediterranean area. Cogent Eng. 2017, 4, 1410272. [Google Scholar] [CrossRef]
- Glick, S.; Shuler, S.; Guggemos, A.A. Life cycle analysis for sustainable development: A case study of parking lot pavements. Int. J. Construct. Educ. Res. 2013, 9, 226–236. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Ghadimi, B.; Abdelhady, A.; Harvey, J. Initial evaluation methodology and case studies for life cycle impact of permeability of permeable pavements. Int. J. Transp. Sci. Technol. 2018, 7, 169–178. [Google Scholar] [CrossRef]
- Electric Power Research Institute. Water & Sustainability: U.S. electricity consumption for water supply & treatment e the next half century, 4, Topical Report; Electric Power Research Institute: Palo Alto, CA, USA, 2002. [Google Scholar]
- Spatari, S.; Yu, Z.; Montalto, F.A. Life cycle implications of urban green infrastructure. Environ. Pollut. 2011, 159, 2174–2179. [Google Scholar] [CrossRef] [PubMed]
- City of New York. PlaNYC Sustainable Stormwater Management Plan 2008; City of New York: New York, NY, USA, 2008. [Google Scholar]
- De Sousa, M.R.C.; Montalto, F.; Spatari, S. Using life cycle assessment to evaluate green and grey combined sewer overflow control strategies. J. Ind. Ecol. 2012, 16, 901–913. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J.M.; Ingwersen, W.W.; Sojka, S. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system. J. Clean. Prod. 2017, 151, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Mullaney, J.; Lucke, T. Practical review of pervious pavement designs. Clean. Soil Air Water 2014, 42, 111–124. [Google Scholar] [CrossRef]
- Associação Brasileira de Normas Técnicas (ABNT). NBR 16416/2015: Pavimentos Permeáveis de Concreto—Requisitos e Procedimentos (NBR 16416/2015: Pervious Concrete Pavement—Requirements and Procedures); Associação Brasileira de Normas Técnicas (Brazilian Association of Technical Standards) (ABNT): São Paulo, Brazil, 2015. [Google Scholar]
- Wang, T.; Harvey, J.T.; Jones, D. A Framework for Life-Cycle Cost Analyses and Environmental Life-Cycle Assessments for Fully Permeable Pavements; Technical Memorandum, Institute of Transportation Studies, Caltrans Document No.: CTSW-TM-09-249.03 UCPRC Document No.: UCPRC-TM-2010-05; Institute of Transportation Studies: Davis, CA, USA, 2010. [Google Scholar]
- Beecham, S.; Lucke, T.; Myers, B. Designing porous and permeable pavements for stormwater harvesting and reuse. In Proceedings of the First European IAHR Congress, International Association for Hydro-Environment Engineering and Research, Edinburgh, UK, 4–6 May 2010. [Google Scholar]
- Jia, H.; Lu, Y.; Yu, S.L.; Shen, Y. Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Sep. Purif. Technol. 2012, 84, 112–119. [Google Scholar] [CrossRef]
- Sansalone, J.; Kuang, X.; Ying, G.; Ranieri, V. Filtration and clogging of permeable pavement loaded by urban drainage. Water Res. 2012, 46, 6763–6774. [Google Scholar] [CrossRef] [PubMed]
- Park, D.G.; Sandoval, N.; Lin, W.; Kim, H.; Cho, Y.H. A case study: Evaluation of water storage capacity in permeable block pavement. KSCE J. Civ. Eng. 2014, 18, 514–520. [Google Scholar] [CrossRef]
- Knappenberger, T.; Jayakaran, A.D.; Stark, J.D.; Hinman, C.H. Monitoring porous asphalt stormwater infiltration and outflow. J. Irrig Drain Eng. 2017, 143, 04017027. [Google Scholar] [CrossRef]
- Pratt, C.J.; Mantle, J.D.G.; Schofield, P.A. UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality. Water Sci. Technol. 1995, 32, 63–69. [Google Scholar] [CrossRef]
- Pratt, C.J.; Mantle, J.D.G.; Schofield, P.A. Urban stormwater reduction and quality improvement through stormwater reduction and quality improvement through the use of permeable pavements. Water Sci. Technol. 1989, 21, 769–778. [Google Scholar] [CrossRef]
- Ramsey-Washington Metro Watershed District. Porous Asphalt Parking Lot. Little Canada; 2006. Available online: http://rwmetrowatershed.govoffice.com/vertical/Sites/%7BAB493DE7-F6CB-4A58-AFE0-56D80D38CD24%7D/uploads/%7B495C857D-FED3-409E-B58A-E6A16D827DEA%7D.PDF (accessed on 12 July 2018).
- Legret, M.; Colandini, V. Effects of a porous pavement with reservoir structure on runoff water: Water quality and fate of heavy metals. Water Sci. Technol. 1999, 39, 111–117. [Google Scholar] [CrossRef]
- Pratt, C.J.; Newman, A.P.; Bond, P.C. Mineral oil bio-degradation within a permeable pavement: Long term observations. Water Sci. Technol. 1999, 39, 103–109. [Google Scholar] [CrossRef]
- James, E. A Literature Review on the Effect of Porous Asphalt Roads on Water Pollution. In Sustainable Road Surfaces for Traffic Noise Control; Silvia Project Report; European Commission: Ottawa, ON, Canada, 2013. [Google Scholar]
- Gilbert, J.K.; Clausen, J.C. Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut. Water Res. 2006, 40, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Feng, S.; Ding, Y.; Zhang, S.; Huo, Z. Experimental study on rainfall-runoff relation for porous pavement. Hydrol. Res. 2008, 39, 181–190. [Google Scholar] [CrossRef]
- Eck, B.J.; Winston, R.J.; Hunt, W.F.; Barrett, M.E. Water Quality of Drainage from Permeable Friction Course. J. Environ. Eng. 2012, 138, 174–181. [Google Scholar] [CrossRef]
- Pratt, C.J. Use of permeable, reservoir pavement constructions for stormwater treatment and storage for re-use. Water Sci. Technol. 1999, 39, 145–151. [Google Scholar] [CrossRef]
- Antunes, L.N.; Thives, L.P.; Ghisi, E. Potential for potable water savings in buildings by using stormwater harvested from porous pavements. Water 2016, 8, 110. [Google Scholar] [CrossRef]
- Hammes, G.; Thives, L.P.; Ghisi, E. Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings. J. Environ. Manag. 2018, 222, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Thives, L.P.; Ghisi, E.; Brecht, D.G.; Pires, D.M. Filtering capability of porous asphalt pavements. Water 2018, 10, 206. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E.; Silva, N.M. Potable water savings in multifamily buildings using stormwater runoff from impermeable paved streets. Eur. J. Sustain. Dev. 2018, 7, 120–130. [Google Scholar]
- Guinée, J.B.; Heijungs, R.; Huppes, G. Life cycle assessment: Past, present, and future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). ISO 14040/2006: Environmental Management—Life-Cycle Assessment—Principles and Framework; International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- AzariJafari, H.; Yahia, A.; Amor, M.B. Life cycle assessment of pavements: Reviewing research challenges and opportunities. J. Clean. Prod. 2016, 112, 2187–2197. [Google Scholar] [CrossRef]
- Praticò, F.G.; Ammendola, R.; Moro, A. Factors affecting the environmental impact of pavement wear. Transp. Res. Part D-Transp. Environ. 2010, 15, 127–133. [Google Scholar] [CrossRef]
- Santero, N.J.; Masanet, E.; Horvath, A. Life-cycle assessment of pavements. Part I: Critical review. Resour. Conserv. Recycl. 2010, 55, 801–809. [Google Scholar] [CrossRef]
- Giustozzi, F.; Crispino, M.; Flintsch, G. Multi-attribute life cycle assessment of preventive maintenance treatments on road pavements for achieving environmental sustainability. Int. J. LCA 2012, 17, 409–419. [Google Scholar] [CrossRef]
- Chiu, C.T.; Hsu, T.H.; Yang, W.F. Life cycle assessment on using recycled materials for rehabilitating asphalt pavements. Resour. Conserv. Recycl. 2008, 52, 545–556. [Google Scholar] [CrossRef]
- Holtz, K.; Eighmy, T.T. Scanning European advances in the use of recycled materials in highway construction. Public Roads 2000, 64, 34–40. [Google Scholar]
- Santos, J.; Ferreira, A.; Flintsch, G. A life cycle assessment model for pavement management: Road pavement construction and management in Portugal. Int. J. Pavement Eng. 2014, 16, 315–336. [Google Scholar] [CrossRef]
- Taylor, G.; Patten, J. Effects of Pavement Structure on Vehicle Fuel Consumption; Centre for Surface Transportation Technology (CSTT): New Delhi, India; National Research Council of Canada (NRC): Ottawa, ON, Canada, 2002. [Google Scholar]
- Huang, Y.; Bird, R.; Heidrich, O. Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J. Clean. Prod. 2009, 17, 283–296. [Google Scholar] [CrossRef]
- Santero, N.J.; Horvath, A. Global warming potential of pavements. Environ. Res. Lett. 2009, 4, 034011. [Google Scholar] [CrossRef] [Green Version]
- Chandrappa, A.K.; Biligiri, K.P. Pervious concrete as a sustainable pavement material—Research findings and future prospects: A state-of-the-art review. Constr. Build. Mater. 2016, 111, 262–274. [Google Scholar] [CrossRef]
- Conselho Brasileiro de Construção Sustentável (CBCS). Sustentabilidade na Indústria de Blocos e Pavimento de Concreto: Avaliação do ciclo de vida Modular (Sustainability in the Concrete Block and Pavement Industry: Modular Life Cycle Assessment); Conselho Brasileiro de Construção Sustentável (Brazilian Council for Sustainable Construction) (CBCS): São Paulo, Brazil, 2014. [Google Scholar]
- Li, Y.; Huang, Y.; Quanliang, Y.; Zhang, W.; Meng, F.; Zhang, S. Multi-objective optimization integrated with life cycle assessment for rainwater harvesting systems. J, Hydrol. 2018, 558, 659–666. [Google Scholar] [CrossRef]
- Center for Neighborhood Technology (CNT); American Rivers. The Value of Green Infrastructure, a Guide to Recognizing Its Economic, Environmental and Social Benefits; CNT: Chicago, IL, USA, 2010. [Google Scholar]
- Yuan, X.; Tang, Y.; Li, Y.; Wang, Q.; Zuo, J. Environmental and economic impacts assessment of concrete pavement brick and permeable brick production process—A case study in China. J. Clean. Prod. 2018, 171, 198–208. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Yang, Z.; Ding, X.; Shao, W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Kluck, E.; Ven, M.V.; Baggen, J.; Wee, B.V.; Hofman, R. Environmental life cycle cost for durable porous surface layers with synthetic binders. Int. J. Pavement Eng. 2010, 3, 142–148. [Google Scholar]
- Terhell, S.L.; Cai, K.; Chiu, D.; Murphy, J. Cost and Benefit Analysis of Permeable Pavements in Water Sustainability; University of California Agriculture and Natural Resources: Davis, CA, USA, 2015. [Google Scholar]
- Chui, T.F.M.; Liu, X.; Zhan, W. Assessing cost-effectiveness of specific LID practice designs in response to large storm events. J. Hydrol. 2016, 533, 353–364. [Google Scholar] [CrossRef]
Parameter | Reduction of Pollutants (%) |
---|---|
Suspended solids | 80–99 |
Phosphorus | 65–71 |
Nitrogen | 75–85 |
Total organic carbon | 82 |
Lead | 50–98 |
Zinc | 62–99 |
Chrome | 87–88 |
Cadmium | 0–34 |
Copper | 42 |
Heavy metals | 90–99 |
Biochemical oxygen demand | 80–83 |
Chemical oxygen demand | 88 |
Hydrocarbons | 95 |
Oil | 97–98 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, L.N.; Ghisi, E.; Thives, L.P. Permeable Pavements Life Cycle Assessment: A Literature Review. Water 2018, 10, 1575. https://doi.org/10.3390/w10111575
Antunes LN, Ghisi E, Thives LP. Permeable Pavements Life Cycle Assessment: A Literature Review. Water. 2018; 10(11):1575. https://doi.org/10.3390/w10111575
Chicago/Turabian StyleAntunes, Lucas Niehuns, Enedir Ghisi, and Liseane Padilha Thives. 2018. "Permeable Pavements Life Cycle Assessment: A Literature Review" Water 10, no. 11: 1575. https://doi.org/10.3390/w10111575
APA StyleAntunes, L. N., Ghisi, E., & Thives, L. P. (2018). Permeable Pavements Life Cycle Assessment: A Literature Review. Water, 10(11), 1575. https://doi.org/10.3390/w10111575