An Integrated Analysis of the Eutrophication Process in the Enxoé Reservoir within the DPSIR Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Field Plots
- Plot 1, with 800 m2 (37°57’42’’ N; 7°25’11’’ W), was in an agro-forestry of holm oaks area, which included oats for grazing. The soil was a Cambisol with loamy sand texture derived from granite;
- Plot 2, with 180 m2 (37°56’32’’ N; 7°26’36’’ W), was in an olive grove with no soil cover between crop rows. The soil was a Cambisol with clay loam texture derived from calcareous rock;
- Plot 3, with 380 m2 (37°57’25’’ N; 7°23’59’’ W), was in an agro-forestry of holm oaks area under fallow. The soil was a Luvisol with loamy texture derived from schist.
2.2.2. Lagoon
2.2.3. Enxoé River
2.2.4. Enxoé Reservoir
2.3. Modelling Approach
3. Application of the DPSIR Framework to the Enxoé Catchment
3.1. Driving Forces
3.2. Pressures
3.3. State
3.3.1. Field Scale
3.3.2. Catchment Scale
3.3.3. Reservoir Scale
3.4. Impacts
3.5. Response
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kronvang, B.; Vagstad, N.; Behrendt, H.; Bøgestrand, J.; Larsen, S.E. Phosphorus losses at the catchment scale within Europe: An overview. Soil Use Manage. 2007, 23, 104–116. [Google Scholar] [CrossRef]
- Song, X.; Frostell, B. The DPSIR framework and a pressure-oriented water quality monitoring approach to ecological river restoration. Water 2012, 4, 670–682. [Google Scholar] [CrossRef]
- Halliday, S.J.; Skeffington, R.A.; Bowes, M.J.; Gozzard, E.; Newman, J.R.; Loewenthal, M.; Palmer-Felgate, E.J.; Jarvie, H.P.; Wade, A.J. The water quality of the River Enborne, UK: Observations from high-frequency monitoring in a rural, lowland river system. Water 2012, 6, 150–180. [Google Scholar] [CrossRef] [Green Version]
- Honti, M. Controlling river eutrophication under conflicts of interest—A GIS modeling approach. Water 2015, 7, 5078–5090. [Google Scholar] [CrossRef]
- Pinardi, M.; Fenocchi, A.; Giardino, C.; Sibilla, S.; Bartoli, M.; Bresciani, M. Assessing potential algal blooms in a shallow fluvial lake by combining hydrodynamics modelling and remote-sensed images. Water 2015, 7, 1921–1942. [Google Scholar] [CrossRef] [Green Version]
- Rolighed, J.; Jeppesem, E.; Søndergaard, M.; Bjerring, R.; Janse, J.H.; Mooij, W.M.; Trolle, D. Climate change will make recovery from eutrophication more difficult in shallow Danish Lake Søbygaard. Water 2016, 8, 459. [Google Scholar] [CrossRef]
- Zhang, W.H.; Xu, Q.J.; Wang, X.X.; Hu, X.Z.; Wang, C.; Pang, Y.; Hu, Y.B.; Zhao, Y.; Zhao, X. Spatiotemporal distribution in Lake Tai as affected by wind. Water 2017, 9, 200. [Google Scholar] [CrossRef]
- Beklioğlu, M.; Bucak, T.; Coppens, J.; Bezirci, G.; Tavşanoğlu, Ü.N.; Çakıroğlu, A.I.; Levi, E.E.; Erdoğan, S.; Filiz, N.; Özkan, K.; et al. Restoration of eutrophic lakes with fluctuating water levels: A 20-year monitoring study of two inter-connected lakes. Water 2017, 9, 127. [Google Scholar] [CrossRef]
- Lee, J.-K.; Oh, J.-M. A study on the characteristics of organic matter and nutrients released from sediments into agricultural reservoirs. Water 2018, 10, 980. [Google Scholar] [CrossRef]
- Lee, R.M.; Biggs, T.W.; Fang, X. Thermal and hydrodynamics changes under a warmer climate in a variable stratified hypereutrophic reservoir. Water 2018, 10, 1284. [Google Scholar] [CrossRef]
- Moreira, G.A.L.; Hinegk, L.; Salvadore, A.; Zolezzi, G.; Hölker, F.; Domecq, R.A.M.; Bocci, M.; Carrer, S.; Nat, L.D.; Escribá, J.; et al. Eutrophication, research and management history of the shallow Ypacaraí Lake (Paraguay). Sustainability 2018, 10, 2426. [Google Scholar] [CrossRef]
- Rollwagen-Bollens, G.; Lee, T.; Rose, V.; Bollens, S.M. Beyond eutrophication: Vancouver Lake, WA, USA as a model system for assessing multiple, interacting biotic and abiotic drivers of harmful cyanobacterial blooms. Water 2018, 10, 757. [Google Scholar] [CrossRef]
- Yu, C.; Li, C.; Wang, T.; Zhang, M.; Xu, J. Combined effects of experimental warming and eutrophication on phytoplankton dynamics and nitrogen uptake. Water 2018, 10, 1057. [Google Scholar] [CrossRef]
- Vinçon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001. [Google Scholar] [CrossRef]
- Kawara, O.; Yura, E.; Fujii, S.; Matsumoto, T. A study on the role of hydraulic retention time in eutrophication of the Asahi River Dam Reservoir. Water Sci. Tech. 1998, 37, 245–252. [Google Scholar] [CrossRef]
- Soares, M.C.S.; Marinho, M.M.; Azevedo, S.M.O.F.; Branco, C.W.C.; Huszar, V.L.M. Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica 2012, 47, 197–203. [Google Scholar] [CrossRef]
- Instituto Nacional da Água (INAG). Management of the Trophic Status in Portuguese Reservoirs. Report on Classification and Trophic State Reduction in the Scope of WWTP Directive; Instituto da Água: Lisbon, Portugal, 2009; Available online: https://www.apambiente.pt/?ref=16&subref=7&sub2ref=9&sub3ref=834 (accessed on 20 May 2018).
- ARH Alentejo. Planos de Gestão das Bacias Hidrográficas Integradas nas Regiões Hidrográficas 6 e 7. Região hidrográfica 7; MAMAOT: Lisboa, Portugal, 2012; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjn2Y-_zLneAhVYQd4KHc31Du4QFjABegQIABAC&url=https%3A%2F%2Fsniambgeoviewer.apambiente.pt%2FGeodocs%2Fgeoportaldocs%2FPlanos%2FPGRH6%2FRelSintese%255CRS_RH6_RH7_VF.pdf&usg=AOvVaw325yuMmmdz_b0xABk5HU82 (accessed on 3 November 2018). (In Portuguese)
- Morais, M.M.; Novais, M.H.; Penha, A.; Nunes, S.; Morales, E. Avaliação da integridade ecológica de um reservatório na região mediterrânica: Caso de estudo da albufeira do Enxoé, sul de Portugal. Rev. Ciênc. Tecnol. 2018, 2, 9–25. (In Portuguese) [Google Scholar]
- Coelho, H.; Leitão, P.C. Integrated modelling of watersheds and reservoirs. Pocinho and Enxoé cases. Rev. Bras. Recur. Hidricos. 2010, 31, 77–85. [Google Scholar]
- Ramos, T.B.; Gonçalves, M.C.; Branco, M.A.; Brito, D.; Rodrigues, S.; Sánchez-Pérez, J.M.; Sauvage, S.; Prazeres, A.; Martins, J.C.; Fernandes, M.L.; et al. Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal. Catena 2015, 127, 177–190. [Google Scholar] [CrossRef]
- Ramos, T.B.; Rodrigues, S.; Branco, M.A.; Prazeres, A.; Brito, D.; Gonçalves, M.C.; Martins, J.C.; Fernandes, M.L.; Pires, F.P. Temporal variability of soil organic carbon transport in the Enxoé agricultural watershed. Environ. Earth Sci. 2015, 73, 6663–6676. [Google Scholar] [CrossRef]
- Brito, D.; Neves, R.; Branco, M.A.; Prazeres, A.; Rodrigues, S.; Gonçalves, M.C.; Ramos, T.B. Assessing water and nutrient long-term dynamics and loads in the Enxoé temporary river basin (southeast Portugal). Appl. Water Sci. 2017. under review. [Google Scholar]
- Brito, D.; Neves, R.; Branco, M.C.; Gonçalves, M.C.; Ramos, T.B. Modeling flood dynamics in a temporary river draining to an eutrophic reservoir in southeast Portugal. Environ. Earth Sci. 2017, 76, 377. [Google Scholar] [CrossRef]
- Rodrigues, S.; Ramos, T.B.; Gonçalves, M.C.; Martins, J.C.; Branco, M.A.; Pires, F.P.; Guerreiro, A.; Fernandes, M.L. Erosão hídrica potencial na área da bacia da ribeira do Enxoé. In Proceedings of the Livro de Actas do Encontro Anual da SPCS, INIAV, Oeiras, Portugal, 26–28 June 2013; pp. 57–63. (In Portuguese). [Google Scholar]
- Kirkby, M.J.; Irvine, B.J.; Jones, R.J.A.; Govers, G. The PESERA coarse scale erosion model for Europe. I.—Model rationale and implementation. Eur. J. Soil Sci. 2008, 59, 1293–1306. [Google Scholar] [CrossRef] [Green Version]
- Brito, D.; Ramos, T.B.; Gonçalves, M.C.; Morais, M.; Neves, R. Integrated modelling for water quality management in a eutrophic reservoir in south-eastern Portugal. Environ. Earth Sci. 2018, 77, 40. [Google Scholar] [CrossRef]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.1. User Manual. U.S.; Army Corps of Engineers: Washington, DC, USA, 2003. [Google Scholar]
- European Environment Agency (EEA). The DPSIR framework used by the EEA. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary (accessed on 20 May 2018).
- Skoulikidis, N.Th. The environmental state of rivers in the Balkans—A review within the DPSIR framework. Sci. Total Environ. 2009, 407, 2501–2516. [Google Scholar] [CrossRef] [PubMed]
- Kagalou, I.; Leonardos, I.; Anastasiadou, C.; Neofytou, C. The DPSIR approach for an integrated river management framework. A preliminary application on a Mediterranean site (Kalamas River—NW Greece). Water Resour. Manage 2012, 26, 1677–1692. [Google Scholar] [CrossRef]
- Vannevel, R. Using DPSIR and Balances to Support Water Governance. Water 2018, 10, 118. [Google Scholar] [CrossRef]
- Jia, Y.Z.; Shen, J.Q.; Wang, H.; Dong, G.G.; Sun, F.H. Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China). Water 2018, 10, 554. [Google Scholar] [CrossRef]
- Tscherning, K.; Helming, K.; Krippner, B.; Sieber, S.; Gomez y Paloma, S. Does research applying the DPSIR framework support decision making? Land Use Policy 2012, 29, 102–110. [Google Scholar] [CrossRef]
- Sistema Nacional de Informação de Recursos Hídricos (SNIRH). Sistema Nacional de Informação de Recursos Hídricos. Available online: http://snirh.apambiente.pt/ (accessed on 15 February 2017).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool, Theoretical Documentation, Version 2009; Technical Report, No. 406; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- William, J.R. Sediment routing for agricultural watersheds. Water Resour. Bull. 1975, 11, 965–974. [Google Scholar] [CrossRef]
- Trancoso, A.R.; Braunschweig, F.; Chambel Leitão, P.; Obermann, M.; Neves, R. An advanced modelling tool for simulating complex river systems. Sci. Total Environ. 2009, 407, 3004–3016. [Google Scholar] [CrossRef] [PubMed]
- Zalidis, G.C.; Tsiafouli, M.A.; Takavakoglou, V.; Bilas, G.; Misapolinos, N. Selecting agri-environmental indicators to facilitate monitoring and assessment of EU agri-environmental measures effectiveness. J. Environ. Manag. 2004, 70, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Torrent, J.; Barberis, E.; Gil-Sotres, F. Agriculture as a source of phosphorus for eutrophication in southern Europe. Soil Use Manag. 2007, 23, 25–35. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and eutrophication: Where do we go from here? Sustainability. 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Pinto-Correia, T.; Ribeiro, N.; Sá-Sousa, P. Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor. Syst. 2011, 82, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Yevenes, M.A.; Mannaerts, C.M. Seasonal and land use impacts on the nitrate budget and export of a mesoscale catchment in Southern Portugal. Agric. Water Manage. 2011, 102, 54–65. [Google Scholar] [CrossRef]
- Alexandrov, Y.; Laronne, J.B.; Reid, I. Suspended sediment concentration and its variation with water discharge in a dryland ephemeral channel, northern Negev, Israel. J. Arid Environ. 2003, 53, 73–84. [Google Scholar] [CrossRef]
- Alexandrov, Y.; Laronne, J.B.; Reid, I. Intra-event and inter-seasonal behaviour of suspended sediment in flash floods of the semi-arid northern Negev, Israel. Geomorphology 2007, 85, 85–97. [Google Scholar] [CrossRef]
- Rovira, A.; Batalla, R.J. Temporal distribution of suspended sediment transport in a Mediterranean basin: The Lower Tordera (NE Spain). Geomorphology 2006, 79, 58–71. [Google Scholar] [CrossRef]
- de Vente, J.; Poesen, J.; Bazzoffi, P.; van Rompaey, A.; Verstraeten, G. Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surf. Process. Landf. 2006, 31, 1017–1034. [Google Scholar] [CrossRef]
- Nunes, A.N.; Almeida, A.C.; Coelho, C.O.A. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Huber, S.; Prokop, G.; Arrouays, D.; Banko, G.; Bispo, A.; Jones, R.J.A.; Kibblewhite, M.; Lexer, W.; Moller, A.; Rickson, R.J.; et al. Environmental Assessment of Soil for Monitoring: Volume I Indicators & Criteria; Office for the Official Publications of the European Communities: Luxembourg City, Luxembourg, 2008; p. 339. [Google Scholar]
- Boix-Fayos, C.; Martínez-Mena, M.; Arnau-Rosalén, E.; Calvo-Cases, A.; Castillo, V.; Albaladejo, J. Measuring soil erosion by field plots: Understanding the sources of variation. Earth Sci. Rev. 2006, 78, 267–285. [Google Scholar] [CrossRef]
- Cammeraat, E.L.H. A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surf. Process. Landf. 2002, 27, 1201–1222. [Google Scholar] [CrossRef]
- Cammeraat, E.L.H. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in Southeast Spain. Agric. Ecosys. Environ. 2004, 104, 317–332. [Google Scholar] [CrossRef]
- Osterkamp, W.R.; Toy, T.J. Geomorphic considerations for erosion prediction. Environ. Geo. 1997, 29, 152–157. [Google Scholar] [CrossRef]
- Bull, L.J. Magnitude and variation in the contribution of bank erosion to the suspended sediment load of the River Severn, UK. Earth Surf. Process. Landf. 1997, 22, 1109–1123. [Google Scholar] [CrossRef]
- Lefrançois, J.; Grimaldi, C.; Gascuel-Odoux, C.; Gilliet, N. Suspended sediment and discharge relationships to identify bank degradation as a main sediment source on small agricultural catchments. Hydrol. Process. 2007, 21, 2923–2933. [Google Scholar] [CrossRef]
- Butturini, A.; Gallart, F.; Latron, J. Cross-site comparison of variability of DOC and nitrate C–Q hysteresis during the autumn–winter period in three Mediterranean headwater streams: A synthetic approach. Biogeochemistry 2006, 77, 327–349. [Google Scholar]
- Walling, D.A.; Webb, B.W. Erosion and Sediment Yield: A Global Overview; IAHS Press: Oxford, England, 1996; pp. 3–19. [Google Scholar]
- Casalí, J.; Giménez, R.; Díez, J.; Álvarez-Mozos, J.; Del Valle de Lersundi, J.; Goñi, M.; Campo, M.A.; Chahor, Y.; Gastesi, R.; López, J. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain). Agric. Water Manage. 2010, 97, 1683–1694. [Google Scholar] [CrossRef]
- Oeurng, C.; Sauvage, S.; Sanchez-Pérez, J.M. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol. 2011, 401, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Strohmeier, S.; Knorr, K.H.; Reichert, M. Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: Insights from high frequency measurements. Biogeosci. Disc. 2013, 10, 905–916. [Google Scholar] [CrossRef]
- Havens, K.E.; James, R.T.; East, T.L.; Smith, V.H. N:P ratios, light limitation and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ. Poll. 2003, 122, 379–390. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Sharpley, A.N.; Withers, P.J.A.; Scott, J.T.; Haggard, B.E.; Neal, C. Phosphorus mitigation to control river eutrophication: Murky waters, inconvenient truths, and “postnormal” science. J. Environ. Qual. 2013, 42, 295–304. [Google Scholar] [CrossRef] [PubMed]
Element | Erosion Plots | Enxoé River(kg ha−1) | ||
---|---|---|---|---|
Plot 1 (kg ha−1) | Plot 2( kg ha−1) | Plot 3 (kg ha−1) | ||
Sediment: | ||||
2009/2010 | 85.5 | 405.0 | - | - |
2010/2011 | 96.3 | 255.4 | - | 480.2 |
2011/2012 | 79.7 | 58.3 | 1.3 | 12.5 |
2012/2013 | 242.1 | 36.4 | 38.8 | 369.4 |
Total | 503.6 | 755.1 | 40.1 | 862.1 |
Annual yield | 125.9 | 188.8 | 20.1 | 287.4 |
TP: | ||||
2009/2010 | 0.04 | 0.19 | - | - |
2010/2011 | 0.07 | 0.16 | - | 0.96 |
2011/2012 | 0.08 | 0.02 | 0.00 | 0.04 |
2012/2013 | 0.06 | 0.03 | 0.11 | 0.84 |
Total | 0.26 | 0.40 | 0.12 | 1.84 |
Annual yield | 0.07 | 0.10 | 0.01 | 0.61 |
NO3−: | ||||
2009/2010 | 0.13 | 0.26 | - | - |
2010/2011 | 0.35 | 0.14 | - | 45.53 |
2011/2012 | 0.15 | 0.13 | 0.01 | 4.38 |
2012/2013 | 0.50 | 0.09 | 1.13 | 15.07 |
Total | 1.14 | 0.61 | 1.14 | 64.98 |
Annual yield | 0.29 | 0.15 | 0.57 | 21.66 |
POC: | ||||
2009/2010 | 1.98 | 5.86 | - | - |
2010/2011 | 0.46 | 5.03 | - | 215.0 |
2011/2012 | 0.53 | 15.43 | 0.08 | 6.0 |
2012/2013 | 2.46 | 0.72 | 1.52 | 166.0 |
Total | 5.42 | 24.04 | 1.60 | 387.0 |
Annual yield | 1.36 | 6.76 | 0.80 | 129.0 |
DOC: | ||||
2009/2010 | 0.95 | 1.16 | - | - |
2010/2011 | 0.96 | 0.65 | - | 147.0 |
2011/2012 | 0.07 | 0.20 | 0.06 | 3.0 |
2012/2013 | 0.91 | 0.19 | 1.56 | 68.0 |
Total | 2.89 | 2.20 | 1.62 | 218.0 |
Annual yield | 0.72 | 0.55 | 0.81 | 72.6 |
Element a | Autumn | Winter | Spring | ||||||
---|---|---|---|---|---|---|---|---|---|
Source b | Transfer c | Pattern d | Source b | Transfer c | Pattern d | Source b | Transfer c | Pattern d | |
Particulate elements | |||||||||
—SSC, TP, PP and POC | RB | R | F/AC | AF | R | F/M | RB/AF | R | F/M |
Soluble elements | |||||||||
—SRP | RB/AF | R/LF | D/M | RB | R | F/AC | RB | R | F/AC |
—NO3− | AF | LF | F/AC | AF | LF | D/M | AF | LF | D/AC |
—DOC | AF | LF | D/AC | AF | LF | D/AC | AF | LF | D/AC |
—EC | – | LF | D | – | LF | D | – | LF | D |
—Na+, Ca2+, Mg2+, K+ | – | LF | D | – | LF | D | – | LF | D |
—Total Fe | – | LF | D | – | LF | D | – | LF | F |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, T.B.; Darouich, H.; Gonçalves, M.C.; Brito, D.; Castelo Branco, M.A.; Martins, J.C.; Fernandes, M.L.; Pires, F.P.; Morais, M.; Neves, R. An Integrated Analysis of the Eutrophication Process in the Enxoé Reservoir within the DPSIR Framework. Water 2018, 10, 1576. https://doi.org/10.3390/w10111576
Ramos TB, Darouich H, Gonçalves MC, Brito D, Castelo Branco MA, Martins JC, Fernandes ML, Pires FP, Morais M, Neves R. An Integrated Analysis of the Eutrophication Process in the Enxoé Reservoir within the DPSIR Framework. Water. 2018; 10(11):1576. https://doi.org/10.3390/w10111576
Chicago/Turabian StyleRamos, Tiago B., Hanaa Darouich, Maria C. Gonçalves, David Brito, Maria A. Castelo Branco, José C. Martins, Manuel L. Fernandes, Fernando P. Pires, Manuela Morais, and Ramiro Neves. 2018. "An Integrated Analysis of the Eutrophication Process in the Enxoé Reservoir within the DPSIR Framework" Water 10, no. 11: 1576. https://doi.org/10.3390/w10111576
APA StyleRamos, T. B., Darouich, H., Gonçalves, M. C., Brito, D., Castelo Branco, M. A., Martins, J. C., Fernandes, M. L., Pires, F. P., Morais, M., & Neves, R. (2018). An Integrated Analysis of the Eutrophication Process in the Enxoé Reservoir within the DPSIR Framework. Water, 10(11), 1576. https://doi.org/10.3390/w10111576