Environmental Flow Assessment Considering Inter- and Intra-Annual Streamflow Variability under the Context of Non-Stationarity
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Change Point Analysis Method
3.2. The Decomposition Procedure
3.3. Standardized Precipitation Index (SPI)
3.4. Percent of Flow Approach
3.5. Range of Variability Approach (RVA)
3.6. Indicators of the Intra-Annual Variability of Streamflow
4. Results of Environmental Flow Assessment
4.1. Identifying Runoff Change Point in the POD
4.2. Reconstructing Streamflow Series
4.3. Assessing the Environmental Flow
5. Evaluation of Inter- and Intra-Annual Streamflow Characteristics
5.1. Evaluation of Inter-Annual Streamflow Characteristics
5.2. Evaluation of Intra-Annual Streamflow Characteristics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vörösmarty, C.J.; Mcintyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohl, E.; Angermeier, P.L.; Bledsoe, B.; Kondolf, G.M.; MacDonnell, L.; Merritt, D.M.; Palmer, M.A.; Poff, N.L.; Tarboton, D. River restoration. Water Resour. Res. 2005, 41, W10301. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Nislow, K.H. Changes in hydrologic regime by dams. Geomorphology 2005, 71, 61–78. [Google Scholar] [CrossRef]
- Olden, J.D.; Naiman, R.J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biol. 2010, 55, 86–107. [Google Scholar] [CrossRef]
- Ashraf, F.B.; Haghighi, A.T.; Marttila, H.; Kløve, B. Assessing impacts of climate change and river regulation on flow regimes in cold climate: A study of a pristine and a regulated river in the sub-arctic setting of Northern Europe. J. Hydrol. 2016, 542, 410–422. [Google Scholar] [CrossRef]
- Poff, L.R.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Lytle, D.A.; Poff, N.L. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Arthington, A.H.; Bunn, S.E.; Poff, N.L.; Naiman, R.J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 2006, 16, 1311–1318. [Google Scholar] [CrossRef]
- Poff, L.R.; Tokar, S.; Johnson, P. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnol. Oceanogr. 1996, 41, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Poff, L.R.; Matthews, J.H. Environmental flows in the Anthropocence: Past progress and future prospects. Curr. Opin. Environ. Sustain. 2013, 5, 667–675. [Google Scholar] [CrossRef]
- Piniewski, M.; Laizé, C.L.; Acreman, M.C.; Okruszko, T.; Schneider, C. Effect of climate change on environmental flow indicators in the Narew basin, Poland. J. Environ. Qual. 2014, 43, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthington, A.H.; Kennen, J.G.; Stein, E.D.; Webb, J.A. Recent advances in environmental flows science and water management—Innovation in the Anthropocene. Freshw. Biol. 2018, 00, 1–13. [Google Scholar] [CrossRef]
- Smakhtin, V.; Anputhas, M. An Assessment of Environmental Flow Requirements of Indian River Basins; IWMI International Water Management Institute: Colombo, Sri Lanka, 2009; pp. 13–23. [Google Scholar]
- Poff, N.L.; Brown, C.M.; Grantham, T.E.; Matthews, J.H.; Palmer, M.A.; Spence, C.M.; Wilby, R.L.; Haasnoot, M.; Mendoza, G.F.; Dominique, K.C.; et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Chang. 2016, 6, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Shiau, J.T.; Wu, F.C. Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime. Water Resour. Res. 2007, 43, 813–816. [Google Scholar] [CrossRef]
- Jager, H.I.; Smith, B.T. Sustainable reservoir operation: Can we generate hydropower and preserve ecosystem values? River Res. Appl. 2010, 24, 340–352. [Google Scholar] [CrossRef]
- Richter, B.D.; Warner, A.T.; Meyer, J.L.; Lutz, K. A collaborative and adaptive process for developing environmental flow recommendations. River Res. Appl. 2006, 22, 297–318. [Google Scholar] [CrossRef]
- Hughes, D.A.; Desai, A.Y.; Birkhead, A.L.; Louw, D. A new approach to rapid, desktop-level, environmental flow assessments for rivers in South Africa. Int. Assoc. Sci. Hydrol. Bull. 2014, 59, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Acreman, M.; Arthington, A.H.; Colloff, M.J.; Couch, C.; Crossman, N.D.; Dyer, F.; Overton, I.; Pollino, C.A.; Stewardson, M.J.; Young, W. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 2016, 12, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.; Richter, B.; Arthington, A.; Bunn, S.; Naiman, J.R.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, M.C.; et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 2010, 55, 147–170. [Google Scholar] [CrossRef]
- Belmar, O.; Velasco, J.; Martinez-Capel, F. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean Rivers, Segura River Basin (Spain). Environ. Manag. 2011, 47, 992–1004. [Google Scholar] [CrossRef] [PubMed]
- Finn, M.; Jackson, S. Protecting indigenous values in water management: A challenge to conventional environmental flow assessments. Ecosystems 2011, 14, 1232–1248. [Google Scholar] [CrossRef]
- Buchanan, C.; Moltz, H.L.N.; Haywood, H.C.; Palmer, J.B.; Griggs, A.N. A test of The Ecological Limits of Hydrologic Alteration (ELOHA) method for determining environmental flows in the Potomac River basin, USA. Freshw. Biol. 2013, 58, 2632–2647. [Google Scholar] [CrossRef]
- Mierau, D.W.; Trush, W.J.; Rossi, G.J.; Carah, J.K.; Clifford, M.O.; Howard, J.K. Managing diversions in unregulated streams using a modified percent-of-flow approach. Freshw. Biol. 2018, 63, 752–768. [Google Scholar] [CrossRef]
- King, A.J.; Gawne, B.; Beesley, L.; Koehn, J.D.; Nielsen, D.L.; Price, A. Improving ecological response monitoring of environmental flows. Environ. Manag. 2015, 55, 991–1005. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Huang, S.Z.; Huang, G.H.; Huang, Q.; Wang, H.; Wang, L.; Zhang, Y.; Li, P.; Ma, L. Copulas-based risk analysis for inter-seasonal combinations of wet and dry conditions under a changing climate. Int. J. Climatol. 2018, in press. [Google Scholar] [CrossRef]
- Poff, L.R. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 2018, 63, 1011–1021. [Google Scholar] [CrossRef]
- Liu, S.Y.; Huang, S.Z.; Xie, Y.Y.; Wang, H.; Leng, G.Y.; Huang, Q.; Wei, X.T.; Wang, L. Identification of the non-stationarity of floods: Changing patterns, causes, and implications. Water Resour. Manag. 2018, in press. [Google Scholar] [CrossRef]
- Liu, S.Y.; Huang, S.Z.; Xie, Y.Y.; Wang, H.; Huang, Q.; Leng, G.Y.; Li, P.; Wang, L. Spatial-temporal changes in vegetation cover in a typical semi-humid and semi-arid region in China: Changing patterns, causes and implications. Ecol. Indic. 2019, 98, 462–475. [Google Scholar] [CrossRef]
- Meng, E.H.; Huang, S.Z.; Huang, Q.; Fang, W.; Wu, L.Z.; Wang, L. A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. J. Hydrol. 2019, in press. [Google Scholar] [CrossRef]
- Acreman, M.C.; Overton, I.C.; King, J.; Wood, P.J.; Cowx, I.G.; Dunbar, M.J.; Young, W.J.; Kendy, E. The changing role of ecohydrological science in guiding environmental flows. Int. Assoc. Sci. Hydrobiol. Bull. 2014, 59, 433–450. [Google Scholar] [CrossRef] [Green Version]
- Dhanya, C.T.; Kumar, A. Making a case for estimating environmental flow under climate change. Curr. Sci. 2015, 109, 1019–1020. [Google Scholar]
- Rodríguez, R.A.; Herrera, A.M.A.; Santander, J.; Miranda, J.V.; Perdomo, M.E.; Ángel, Q.; Riera, R.; Fath, B.D. From a stationary to a non-stationary ecological state equation: Adding a tool for ecological monitoring. Ecol. Modell. 2016, 320, 44–51. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.Z.; Ren, K.; Huang, Q.; Huang, G.H.; Cheng, G.H.; Li, K.L. Examining the applicability of different sampling techniques in the development of decomposition-based streamflow forecasting models. J. Hydrol. 2019, in press. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, H.; Liang, L.; Ping, F.; Xia, X.; Mou, X.; Liang, J. Assessment of ecological instream flow requirements under climate change Pseudorasbora parva. Int. J. Environ. Sci. Technol. 2016, 14, 1–12. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Wang, Y.; Chen, Y. Calculation of the instream ecological flow of the Wei River Based on hydrological variation. J. Appl. Math. 2014, 11, 1–9. [Google Scholar] [CrossRef]
- Huang, S.Z.; Chang, J.X.; Huang, Q.; Chen, Y. Monthly streamflow prediction using modified EMD-based support vector machine. J. Hydrol. 2014, 511, 764–775. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Yang, Y.; Long, D.; Feng, M. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Yan, T.; Bai, J.; Yi, A.L.Z.; Shen, Z. SWAT-Simulated streamflow responses to climate variability and human activities in the Miyun Reservoir Basin by considering streamflow components. Sustainability 2018, 10, 941. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Istanbulluoglu, E.; Bai, T.; Huang, Q.; Yang, D.; Huang, S. Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat. Int. 2015, 380–381, 169–179. [Google Scholar] [CrossRef]
- Guo, A.; Chang, J.; Liu, D.; Wang, Y.; Huang, Q.; Li, Y. Variations in the precipitation-runoff relationship of the Weihe River Basin. Hydrol. Res. 2017, 48, 295–310. [Google Scholar] [CrossRef]
- Du, J.; Shi, C.X. Effects of climatic factors and human activities on runoff of the Weihe River in recent decades. Quat. Int. 2012, 282, 58–65. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Identification of abrupt changes of the relationship between rainfall and runoff in the Wei River Basin, China. Theor. Appl. Climatol. 2015, 120, 299–310. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Spatio-temporal changes and frequency analysis of drought in the Wei River Basin, China. Water Resour. Manag. 2014, 28, 3095–3110. [Google Scholar] [CrossRef]
- Shi, H.; Wang, G. Impacts of climate change and hydraulic structures on runoff and sediment discharge in the middle Yellow River. Hydrol. Processes 2015, 29, 3236–3246. [Google Scholar] [CrossRef] [Green Version]
- Pedro, B.G.; Plamen, I.C.; Luís, A.; Amaral, N. Scale invariance in the nonstationarity of human heart rate. Phys. Rev. Lett. 2001, 87, 168105. [Google Scholar] [CrossRef]
- Cleveland, R.B. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–33. [Google Scholar]
- Sanchezvazquez, M.J.; Nielen, M.; Gunn, G.J.; Lewis, F.I. Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005–2011. Prev. Vet. Med. 2012, 104, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodosiou, M. Forecasting monthly and quarterly time series using STL decomposition. Int. J. Forecast. 2011, 27, 1178–1195. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Heim, R.R.J. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Bordi, I.; Cancelliere, A.; Rossi, G.; Sutera, A. Spatial variability of drought: An analysis of the SPI in Sicily. Water Resour. Manag. 2003, 17, 273–296. [Google Scholar] [CrossRef]
- Shiau, J.T. Fitting drought duration and severity with Two-Dimensional Copulas. Water Resour. Manag. 2006, 20, 795–815. [Google Scholar] [CrossRef]
- Raziei, T.; Saghafian, B.; Paulo, A.A.; Pereira, L.S.; Bordi, I. Spatial patterns and temporal variability of drought in western Iran. Water Resour. Manag. 2009, 23, 439–455. [Google Scholar] [CrossRef]
- Dubrovsky, M.; Svoboda, M.D.; Trnka, M.; Hayes, M.J.; Wilhite, D.A.; Zalud, Z.; Hlavinka, P. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor. Appl. Climatol. 2009, 96, 155–171. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Jowett, I.G.; Richardson, J. Habitat Use by New Zealand Fish and Habitat Suitability Models; NIWA Science Communication: Wellington, New Zealand, 2018; ISBN 987-0-478-23283-7. [Google Scholar]
- Richter, B.D.; Davis, M.M.; Apse, C.; Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 2012, 28, 1312–1321. [Google Scholar] [CrossRef]
- Lynch, M.; Gabriel, W. Environmental tolerance. Am. Nat. 1987, 129, 283–303. [Google Scholar] [CrossRef] [Green Version]
- Yarnell, S.M.; Petts, G.E.; Schmidt, J.C.; Whipple, A.A.; Beller, E.E.; Dahm, C.N.; Goodwin, P.; Viers, J.H. Functional flows in modified Riverscapes: Hydrographs, Habitats and Opportunities. Bioscience 2015, 65, 963–972. [Google Scholar] [CrossRef]
- Davies, P.M.; Naiman, R.J.; Warfe, D.M.; Pettit, N.E.; Arthington, A.H.; Bunn, S.E. Flow–ecology relationships: Closing the loop on effective environmental flows. Mar. Freshw. Res. 2014, 65, 133–141. [Google Scholar] [CrossRef]
- Richter, B.; Baumgartner, J.; Wigington, R.; Braun, D. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Yang, T.; Xu, C.Y.; Chen, X.; Singh, V.P.; Shao, Q.X.; Hao, Z.C. Assessing the impact of human activities on hydrological and sediment changes (1953–2000) in nine major catchments of the loess plateau, China. River Res. Appl. 2010, 26, 322–340. [Google Scholar] [CrossRef]
Water Years | Monthly EF (m3/s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |
Wet | 22.6 | 22.2 | 26.0 | 47.4 | 44.6 | 44.2 | 127.9 | 138.9 | 161.2 | 151.1 | 76.8 | 48.6 |
Normal | 16.3 | 16.3 | 23.8 | 42.4 | 44.0 | 25.6 | 59.3 | 86.5 | 71.7 | 73.6 | 55.6 | 35.9 |
Dry | 18.1 | 17.6 | 19.4 | 47.3 | 58.0 | 25.6 | 40.7 | 32.9 | 46.0 | 33.0 | 30.9 | 19.9 |
Indicator | Calculated EF | Planned EF | ||||
---|---|---|---|---|---|---|
Medians (m3/s) | Di (%) | Medians (m3/s) | Di (%) | |||
Pre | Post | Pre | Post | |||
Group 1: Magnitude of monthly river flow | ||||||
January | 27.4 | 18.1 | 12.1 | 27.4 | 21.6 | 101.7 |
February | 28 | 17.6 | 12.1 | 28 | 21.6 | 101.7 |
March | 34.6 | 23.8 | 29 | 34.6 | 21.6 | 74.1 |
April | 61.3 | 46.7 | 19 | 61.3 | 24 | 63.8 |
May | 64.1 | 44.6 | 3.4 | 64.1 | 24.1 | 32.8 |
June | 58.3 | 28.5 | 37.9 | 58.3 | 21.6 | 69 |
July | 104 | 76.4 | 8.6 | 104 | 64 | 1.7 |
August | 91.4 | 86.5 | 6.9 | 91.4 | 66.5 | 6.9 |
September | 140.5 | 126.3 | 13.8 | 140.5 | 102.5 | 3.4 |
October | 109 | 81.5 | 3.2 | 109 | 74.5 | 21.4 |
November | 62.5 | 55.5 | 19 | 62.5 | 22.1 | 58.6 |
December | 33.4 | 32 | 6.9 | 33.4 | 21.6 | 63.8 |
Group 2: Magnitude of annual extreme water conditions | ||||||
1-day minimum | 17.9 | 16.3 | 96.6 | 17.9 | 18.1 | 101.7 |
3-day minimum | 18.0 | 16.3 | 96.6 | 18.0 | 18.7 | 106.9 |
7-day minimum | 19.6 | 16.3 | 101.7 | 19.6 | 19.9 | 106.9 |
30-day minimum | 25.0 | 17.1 | 12.1 | 25.0 | 21.4 | 91.4 |
90-day minimum | 30.1 | 18.5 | 3.4 | 30.1 | 21.6 | 86.2 |
1-day maximum | 1270.0 | 1300.0 | 24.1 | 1270.0 | 1230.0 | 34.5 |
3-day maximum | 880.7 | 864.3 | 13.8 | 880.7 | 842.8 | 8.6 |
7-day maximum | 668.3 | 643.4 | 24.1 | 668.3 | 634.6 | 19.0 |
30-day maximum | 329.5 | 298.4 | 27.6 | 329.5 | 291.6 | 37.9 |
90-day maximum | 208.9 | 196.7 | 3.4 | 208.9 | 173.1 | 6.9 |
Base flow index | 0.2 | 0.2 | 69.0 | 0.2 | 0.2 | 58.6 |
Group 3: Timing of annual extreme water conditions | ||||||
Date of minimum | 62.0 | 30.0 | 60.7 | 62.0 | 185.0 | 55.8 |
Date of maximum | 207.0 | 205.0 | 7.6 | 207.0 | 207.0 | 11.1 |
Group 4: Frequency and duration of high and low pulses | ||||||
Low pulse count | 5.0 | 4.0 | 72.0 | 5.0 | 7.0 | 67.1 |
Low pulse duration | 5.5 | 8.0 | 1.7 | 5.5 | 7.5 | 1.7 |
High pulse count | 8.0 | 7.0 | 29.4 | 8.0 | 8.0 | 32.4 |
High pulse duration | 4.5 | 4.0 | 6.8 | 4.5 | 4.0 | 6.8 |
Group 5: Rate and frequency of water-condition changes | ||||||
Rise rate | 4.4 | 8.7 | 74.1 | 4.4 | 12.5 | 74.1 |
Fall rate | 3.9 | 6.6 | 53.5 | 3.9 | 9.7 | 89.7 |
Reversals | 92.0 | 65.0 | 90.2 | 92.0 | 62.5 | 90.2 |
D0 = 45% | D0 = 64% |
Different Conditions | Average Indicators of Intra-Annual Variations of Streamflow | |||||
---|---|---|---|---|---|---|
Cn | Cc | Cd | Cp | Cr | Ca | |
Original streamflow | 0.87 | 0.33 | 0.44 | 0.56 | 14.99 | 330.98 |
Post-division (calculated EF) | 0.93 | 0.35 | 0.47 | 0.67 | 17.73 | 300.85 |
Post-division (planned EF) | 1.01 | 0.38 | 0.48 | 0.54 | 16.67 | 297.74 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, K.; Huang, S.; Huang, Q.; Wang, H.; Leng, G. Environmental Flow Assessment Considering Inter- and Intra-Annual Streamflow Variability under the Context of Non-Stationarity. Water 2018, 10, 1737. https://doi.org/10.3390/w10121737
Ren K, Huang S, Huang Q, Wang H, Leng G. Environmental Flow Assessment Considering Inter- and Intra-Annual Streamflow Variability under the Context of Non-Stationarity. Water. 2018; 10(12):1737. https://doi.org/10.3390/w10121737
Chicago/Turabian StyleRen, Kang, Shengzhi Huang, Qiang Huang, Hao Wang, and Guoyong Leng. 2018. "Environmental Flow Assessment Considering Inter- and Intra-Annual Streamflow Variability under the Context of Non-Stationarity" Water 10, no. 12: 1737. https://doi.org/10.3390/w10121737
APA StyleRen, K., Huang, S., Huang, Q., Wang, H., & Leng, G. (2018). Environmental Flow Assessment Considering Inter- and Intra-Annual Streamflow Variability under the Context of Non-Stationarity. Water, 10(12), 1737. https://doi.org/10.3390/w10121737