Effectiveness and Durability of Polyacrylamide (PAM) and Polysaccharide (Jag C 162) in Reducing Soil Erosion under Simulated Rainfalls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Experiment Preparation
2.3. Rainfall Simulation
2.4. Runoff and Sediment Collection
3. Results
3.1. Temporal Variations of Soil Erosional Responses
3.2. Aggregate Size Distribution of the Eroded Surface Soil
4. Discussion
4.1. Effectiveness of PAM and Jag C 162
4.2. Durability of PAM and Jag C 162 between Two Rainfall Events
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Bridges, E.M.; Oldeman, L.R. Global assessment of human-induced soil degradation. Arid Soil Res. Rehabil. 1999, 13, 319–325. [Google Scholar] [CrossRef]
- Liu, Y.S. Optimal design on regional agricultural land use in western China. J. China Agric. Resour. Reg. Plan. 2000, 21, 10–13. (In Chinese) [Google Scholar]
- Deng, L.; Shangguan, Z.; Sweeney, S. “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China. Sci. Rep. 2014, 4, 7039. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.H.; Wang, Z.L. Soil erosion storm rainfall standard in the loess plateau. Bull. Soil Water Conserv. 1987, 7, 38–44. (In Chinese) [Google Scholar] [CrossRef]
- Jiao, J.Y.; Wang, W.Z. Non-uniformity of spatial distribution of rainfall on the loess plateau. J. China Hydrol. 2001, 21, 20–24. (In Chinese) [Google Scholar]
- Cerdà, A.; González-Pelayo, O.; Giménez-Morera, A.; Jordán, A.; Pereira, P.; Novara, A.; Brevik, E.C.; Prosdocimi, M.; Mahmoodabadi, M.; Keesstra, S.; et al. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency—High magnitude simulated rainfall events. Soil Res. 2016, 54, 154–165. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Auerswald, K.; Fischer, F.K.; Kistler, M.; Treisch, M.; Maier, H.; Brandhuber, R. Behavior of farmers in regard to erosion by water as reflected by their farming practices. Sci. Total Environ. 2017, 613–614, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.A.; Campos, M.; Guzmán, G.; Castillo-Llanque, F.; Vanwalleghem, T.; Lora, Á.; Giráldez, J.V. Soil erosion control, plant diversity, and arthropod communities under heterogeneous cover crops in an olive orchard. Environ. Sci. Pollut. Res. Int. 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Biddoccu, M.; Ferraris, S.; Pitacco, A.; Cavalloet, E. Temporal variability of soil management effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North-West Italy. Soil Tillage Res. 2017, 165, 46–58. [Google Scholar] [CrossRef]
- Jomaa, S.; Barry, D.A.; Brovelli, A.; Heng, B.C.P.; Sander, G.C.; Parlange, J.-Y.; Rose, C.W. Rain splash soil erosion estimation in the presence of rock fragments. Catena 2012, 92, 38–48. [Google Scholar] [CrossRef]
- Jomaa, S.; Barry, D.A.; Heng, B.C.P.; Brovelli, A.; Sander, G.C.; Parlange, J.-Y. Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling. Water Resour. Res. 2012, 48, 213–223. [Google Scholar] [CrossRef]
- Blavet, D.; De Noni, G.; Le Bissonnais, Y.; Leonard, M.; Maillo, L.; Laurent, J.Y.; Asseline, J.; Leprun, J.C.; Arshad, M.A.; Roose, E. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil Tillage Res. 2009, 106, 124–136. [Google Scholar] [CrossRef]
- Giménez Morera, A.; Ruiz Sinoga, J.D.; Cerdà, A. The impact of cotton geotextiles on soil and water losses in Mediterranean rainfed agricultural land. Land Degrad. Dev. 2010, 21, 210–217. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Fans, J.; Malik, M.; Letey, J. Polymers as soil conditioners under consecutive irrigations and rainfall. Soil Sci. Soc. Am. J. 1989, 53, 1173–1177. [Google Scholar] [CrossRef]
- Shanmuganathan, R.T.; Oades, J.M. Effect of dispersible clay on the physical properties of the B horizon of a red-brown earth. Soil Res. 1982, 20, 315–324. [Google Scholar] [CrossRef]
- Santos, F.L.; Reis, J.L.; Martins, O.C.; Castanheira, N.L.; Serralheiro, R.P. Comparative assessment of infiltration, runoff and erosion of sprinkler irrigated soils. Biosyst. Eng. 2003, 86, 355–364. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Shainberg, I.; Wagner, L.E.; Warrington, D.N.; Levy, G.J. Infiltration and erosion in soils treated with dry PAM, of two molecular weights, and phosphogypsum. Aust. J. Soil Res. 2009, 47, 788–795. [Google Scholar] [CrossRef]
- Nishimura, T.; Kato, M.; Yamamoto, T. Effect of gypsum and polyacrylamide application on erodibility of an acid kunigami mahji soil. Soil Sci. Plant Nutr. 2005, 187–191. [Google Scholar] [CrossRef]
- Yu, J.; Lei, T.; Shainberg, I.; Mamedov, A.I.; Levy, G.J. Infiltration and erosion in soils treated with dry PAM and gypsum. Soil Sci. Soc. Am. J. 2003, 67, 630–636. [Google Scholar] [CrossRef]
- Tümsavas, Z.; Kara, A. The effect of polyacrylamide (PAM) applications on infiltration, runoff and soil losses under simulated rainfall conditions. Afr. J. Biotechnol. 2011, 10, 2894–2903. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, W.; Li, C.; Pu, Y.; Sun, H. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects. Sci. Total Environ. 2016, 554–555, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zreig, M. Control of rainfall-induced soil erosion with various types of polyacrylamide. Soils Sediments 2006, 6, 137–144. [Google Scholar] [CrossRef]
- Chang, A.; Yang, P.L.; Ren, S.M.; Xing, W.M.; Li, X.; Feng, X.W. Efficacy of granular polyacrylamide on runoff, erosion and nitrogen loss at loess slope under rainfall simulation. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar]
- Ajwa, H.A.; Trout, T.J. Trout polyacrylamide and water quality effects on infiltration in sandy loam soils. Soil Sci. Soc. Am. J. 2006, 70, 643–650. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Shainberg, I.; Skidmore, E.L.; Levy, G.J. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils. In Proceedings of the International Soil Conservation Organization Conference Proceedings, Budapest, Hungary, 18–23 May 2008; pp. 18–23. [Google Scholar]
- Levy, G.J.; Levin, J.; Shainberg, I. Polymer effects on runoff and soil erosion from sodic soils. Irrig. Sci. 1995, 16, 9–14. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Letey, J. Effect of polysaccharides, clay dispersion, and impact energy on water infiltration. Soil Sci. Soc. Am. J. 1989, 53, 233–238. [Google Scholar] [CrossRef]
- Levy, G.J.; Levin, J.; Gal, M.; Ben-Hur, M.; Shainberg, I. Polymers’ effects on infiltration and soil erosion during consecutive simulated sprinkler irrigations. Soil Sci. Soc. Am. J. 1992, 56, 902–907. [Google Scholar] [CrossRef]
- Lentz, R.D.; Shainberg, I.; Sojka, R.E.; Carter, D.L. Preventing irrigation furrow erosion with small applications of polymers. Soil Sci. Soc. Am. J. 1992, 56, 1926–1932. [Google Scholar] [CrossRef]
- Zhang, X.C.; Miller, W.P. Polyacrylamide effect on infiltration and erosion in furrows. Soil Sci. Soc. Am. J. 1996, 60, 866–872. [Google Scholar] [CrossRef]
- Agassi, M.; Ben-Hur, M. Stabilizing steep slopes with soil conditioners and plants. Soil Technol. 1992, 5, 249–256. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Keren, R. Polymer effects on water infiltration and soil aggregation. Soil Sci. Soc. Am. J. 1997, 61, 565–570. [Google Scholar] [CrossRef]
- Lee, S.S.; Shah, H.S.; Awad, Y.M.; Kumar, S.; Ok, Y.S. Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environ. Earth Sci. 2015, 74, 2463–2473. [Google Scholar] [CrossRef]
- Green, V.S.; Stott, D.E. Polyacrylamide: A review of the use, effectiveness and cost of a soil erosion control amendment. In Proceedings of the 10th International Soil Conservation Organization Meeting; Stott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; Purdue University and the USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 2001; pp. 384–389. [Google Scholar]
- Levy, G.J.; Ben-Hur, M.; Agassi, M. The effect of polyacrylamide on runoff, erosion, and cotton yield from fields irrigated with moving sprinkler systems. Irrig. Sci. 1991, 12, 55–60. [Google Scholar] [CrossRef]
- Sirjacobs, D.; Shainberg, I.; Rapp, I.; Levy, G.J. Polyacrylamide, sediments, and interrupted flow effects on rill erosionand intake rate. Soil Sci. Soc. Am. J. 2000, 64, 1487–1495. [Google Scholar] [CrossRef]
- Guezennec, G.; Michel, C.; Bru, K.; Touze, S.; Desroche, N.; Mnif, I.; Motelica-Heino, M. Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: A review. Environ. Sci. Pollut. Res. 2015, 22, 6390–6406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentz, R.D. Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam. Geoderma 2015, 241–242, 289–294. [Google Scholar] [CrossRef]
- Liu, J.E.; Wang, Z.L.; Yang, X.M.; Jiao, N.; Shen, N.; Ji, P.F. The impact of natural polymer derivatives on sheet erosion on experimental loess hillslope. Soil Tillage Res. 2014, 139, 23–27. [Google Scholar] [CrossRef]
- Shainberg, I.; Levy, G.J. Organic polymers and soil sealing in cultivated soils. Soil Sci. 1994, 158, 267–273. [Google Scholar] [CrossRef]
- Graber, E.R.; Fine, P.; Levy, G.J. Soil stabilization in semiarid and arid land agriculture. J. Mater. Civ. Eng. 2006, 18, 190–205. [Google Scholar] [CrossRef]
- El-Morsy, E.A.; Malik, M.; Letey, J. Polymer effects on the hydraulic conductivity of saline and sodic soil conditions. Soil Sci. 1991, 151, 430–435. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Clark, P.; Letey, J. Exchangeable Na, polymer, and water quality effects on water infiltration and soil loss. Arid Soil Res. Rehabil. 1992, 6, 311–317. [Google Scholar] [CrossRef]
- Deng, Y.J.; Dixon, J.B.; White, G.N.; Loeppert, R.H.; Juo, A.S.R. Bonding between polyacrylamide and smectite. Colloids Surf. Physicochem. Eng. Asp. 2006, 281, 82–91. [Google Scholar] [CrossRef]
- Van De Ven, T.G.M. Kinetic aspects of polymer and polelectrolyte adsorption on surfaces. Adv. Colloid Interface Sci. 1994, 48, 121–140. [Google Scholar] [CrossRef]
- Lee, J.J.; Fuller, G.G. Adsorption and desorption of flexible polymer-chains in flowing systems. J. Colloid Interface Sci. 1985, 103, 569–577. [Google Scholar] [CrossRef]
- Avadiar, L.; Leong, Y.; Fourie, A.; Nugraha, T. Behaviours of kaolin suspensions with different polyacrylamide (PAM) flocculants under shear. In Chemeca 2013, Challenging Tomorrow; Engineers Australia: Barton, Australia, 2013; pp. 249–254. [Google Scholar]
- Abdel-Alim, A.H.; Hamielec, A.E. Shear degradation of water soluble polymers. I. Degradation of polyacrylamide in a high-shear couette viscometer. J. Appl. Polym. Sci. 1973, 17, 3769–3778. [Google Scholar] [CrossRef]
- Paterson, R.W.; Abernathy, F.H. Turbulent flow drag reduction and degradation with dilute polymer solutions. J. Fluid Mech. 1970, 43, 689–710. [Google Scholar] [CrossRef]
- Wade, J.H.T.; Kumar, P. Electronic microscope studies of polymer degradation. J. Hydronaut. 1972, 6, 40–45. [Google Scholar] [CrossRef]
- Vlachogiannis, M.; Liberatore, M.W.; McHugh, A.J.; Hanratty, T.J. Effectiveness of a drag reducing polymer: Relation to molecular weight distribution and structuring. Phys. Fluids 2003, 15, 3786–3794. [Google Scholar] [CrossRef]
- Wang, Z.L.; Shao, M.A.; Chang, Q.R. Effects of rainfall factors on soil erosion in Loess Plateau. Acta Univ. Agric. Boreali-Occident. 1998, 26, 101–105. (In Chinese) [Google Scholar]
- Wu, B.; Wang, Z.L.; Zhang, Q.W.; Shen, N.; Liu, J.E. Modelling sheet erosion on steep slopes in the loess region of China. J. Hydrol. 2017, 553, 549–558. [Google Scholar] [CrossRef]
- Zhang, K.L.; Xie, Y. Soil Erosion Evaluation on Loess Plateau, 1st ed.; Science Press: Beijing, China, 2015; pp. 29–31. ISBN 978-7-03-045913-8. (In Chinese) [Google Scholar]
- Liu, D.S. Loess and Environment; Science Press: Beijing, China, 1985. (In Chinese) [Google Scholar]
- Xi, C.P.; Cheng, Y.S.; Huang, Z.L. Soil erosion and soil and water conservation measurement in Jiuyuan watershed of Suide County on loess plateau in China. Acta Pedol. Sin. 1953, 2, 148–166. (In Chinese) [Google Scholar]
- Cai, L.J.; Wang, G.D.; Zhang, S.Q. Kinetic energy distribution of raindrops on loess plateau. Bull. Soil Water Conserv. 2003, 4, 28–30. (In Chinese) [Google Scholar] [CrossRef]
- Lebissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility. 1. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Hu, Y.; Fister, W.; Kuhn, N.J. Temporal variation of SOC enrichment from interrill erosion over prolonged rainfall simulations. Agriculture 2013, 3, 726–740. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, N.J. Rainfall simulation experiments on crusting and interrill sediment organic matter content on a silt loam from Devon. Die Erde 2010, 141, 283–300. [Google Scholar]
- Kuhn, N.J.; Bryan, R.B. Drying, soil surface condition and interrill erosion on two Ontario soils. Catena 2004, 57, 113–133. [Google Scholar] [CrossRef]
- Lee, S.S.; Chang, S.X.; Chang, Y.Y.; Ok, Y.S. Commercial versus synthesized polymers for soil erosion control and growth of Chinese cabbage. Springerplus 2013, 2, 534. [Google Scholar] [CrossRef] [PubMed]
- Toy, T.J.; Foster, G.R.; Renard, K.G. Soil Erosion: Processes, Prediction, Measurement, and Control; John Willey and Sons: New York, NY, USA, 2002. [Google Scholar]
- Barthes, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; Asensio, C.; Chamizo, S.; Puigdefábregas, J. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena 2009, 77, 192–199. [Google Scholar] [CrossRef]
- Kinnell, P. Runoff as a factor influencing experimentally determined interrill erodibilities. Soil Res. 1993, 31, 333–342. [Google Scholar] [CrossRef]
- Zhang, X.; Nearing, M.; Miller, W.; Norton, L.; West, L. Modeling interrill sediment delivery. Soil Sci. Soc. Am. J. 1998, 62, 438–444. [Google Scholar] [CrossRef]
- Aly, S.M.; Letey, J. Polymer and water quality effects on flocculation of montmorillonite. Soil Sci. Soc. Am. J. 1988, 52, 1453–1458. [Google Scholar] [CrossRef]
- Seybold, C.A. Polyacrylamide review: Soil conditioning and environmental fate. Commun. Soil Sci. Plant Anal. 1994, 25, 2171–2185. [Google Scholar] [CrossRef]
- Green, V.S.; Stott, D.E.; Norton, L.D.; Graveel, J.G. Polyacrylamide molecular weight and charge effects on infiltration under simulated rainfall. Soil Sci. Soc. Am. J. 2000, 64, 1786–1791. [Google Scholar] [CrossRef]
- Lu, J.H.; Wu, L.S. Polyacrylamide distribution in columns of organic matter-removed soils following surface application. J. Environ. Qual. 2003, 32, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Jomaa, S.; Barry, D.A.; Brovelli, A.; Sander, G.C.; Parlange, J.-Y. Effect of antecedent conditions and rock fragment cover on soil erosion dynamics through multiple rainfall events. J. Hydrol. 2013, 484, 115–127. [Google Scholar] [CrossRef]
Soil Treatment | Concentration (kg·ha−1) | Sum of Runoff Depths (mm) | Reduction Compared with Control (%) | ||||
---|---|---|---|---|---|---|---|
Dry Run | Wet Run | Total | Dry Run | Wet Run | Total | ||
Control | 0 | 29 | 31 | 60 | |||
PAM | 10 | 32 | 30 | 62 | −12 | 2 | −5 |
30 | 26 | 31 | 57 | 9 | 0 | 4 | |
50 | 25 | 28 | 53 | 11 | 11 | 11 | |
Jag C 162 | 10 | 24 | 30 | 54 | 17 | 2 | 9 |
30 | 21 | 28 | 49 | 25 | 10 | 17 | |
50 | 23 | 28 | 51 | 20 | 10 | 15 |
Soil Treatment | Concentration (kg·ha−1) | Soil Loss (kg) | Reduction Compared with Control (%) | ||||
---|---|---|---|---|---|---|---|
Dry Run | Wet Run | Total | Dry Run | Wet Run | Total | ||
Control | 0 | 0.287 | 0.397 | 0.685 | |||
PAM | 10 | 0.162 | 0.186 | 0.348 | 44 | 53 | 49 |
30 | 0.072 | 0.116 | 0.188 | 75 | 71 | 73 | |
50 | 0.043 | 0.058 | 0.101 | 85 | 85 | 85 | |
Jag C 162 | 10 | 0.057 | 0.134 | 0.192 | 80 | 66 | 72 |
30 | 0.026 | 0.078 | 0.104 | 91 | 80 | 85 | |
50 | 0.019 | 0.058 | 0.077 | 93 | 85 | 89 |
Run Event | Size Distribution (mm) | Mass Fraction of Size Classes (%) | ||||||
---|---|---|---|---|---|---|---|---|
Control | PAM | Jag C 162 | ||||||
10 kg·ha−1 | 30 kg·ha−1 | 50 kg·ha−1 | 10 kg·ha−1 | 30 kg·ha−1 | 50 kg·ha−1 | |||
Prior to dry run | >5 | 0.22 ± 0.18 | 1.87 ± 1.87 | 7.74 ± 1.54 | 15.70 ± 1.68 | 0.27 ± 0.12 | 11.32 ± 3.12 | 38.5 ± 2.49 |
2–5 | 0.45 ± 0.35 | 2.68 ± 0.48 | 1.05 ± 0.41 | 1.14 ± 0.17 | 1.84 ± 0.45 | 8.55 ± 1.93 | 3.07 ± 0.97 | |
1–2 | 0.46 ± 0.13 | 2.36 ± 0.41 | 0.63 ± 0.12 | 0.71 ± 0.19 | 3.28 ± 0.48 | 3.25 ± 0.72 | 1.05 ± 0.26 | |
0.5–1 | 1.84 ± 0.41 | 4.70 ± 1.2 | 2.04 ± 1.15 | 2.00 ± 1.05 | 4.54 ± 0.74 | 3.61 ± 1.12 | 1.23 ± 0.38 | |
0.25–0.5 | 3.36 ± 1.76 | 4.54 ± 1.03 | 3.04 ± 1.32 | 3.33 ± 1.88 | 4.02 ± 1.01 | 2.46 ± 0.5 | 1.25 ± 0.47 | |
<0.25 | 93.68 ± 1.56 | 83.85 ± 2.53 | 85.51 ± 1.76 | 77.13 ± 3.74 | 86.06 ± 1.49 | 70.81 ± 2.06 | 54.89 ± 3.4 | |
After dry run | >5 | 0.24 ± 0.15 | 0.38 ± 0.39 | 13.03 ± 1.35 | 20.83 ± 1.22 | 1.78 ± 0.51 | 36.61 ± 13.63 | 49.12 ± 3.82 |
2–5 | 0.34 ± 0.22 | 1.55 ± 0.62 | 1.79 ± 0.36 | 1.37 ± 0.35 | 9.54 ± 1.34 | 7.68 ± 3.63 | 3.01 ± 1.18 | |
1–2 | 0.40 ± 0.14 | 2.82 ± 0.52 | 1.11 ± 0.28 | 0.92 ± 0.22 | 5.89 ± 0.92 | 3.10 ± 0.83 | 1.91 ± 0.82 | |
0.5–1 | 1.13 ± 0.75 | 6.08 ± 1.24 | 2.10 ± 0.51 | 2.61 ± 0.76 | 8.22 ± 1.97 | 4.03 ± 1.21 | 2.48 ± 0.61 | |
0.25–0.5 | 2.04 ± 1.29 | 5.66 ± 0.51 | 2.66 ± 0.83 | 4.79 ± 1.46 | 6.98 ± 3.15 | 3.75 ± 1.48 | 2.12 ± 0.17 | |
<0.25 | 95.85 ± 1.71 | 83.50 ± 1.64 | 79.31 ± 2.1 | 69.49 ± 1.8 | 67.60 ± 5.63 | 44.83 ± 9.64 | 41.36 ± 1.66 | |
After wet run | >5 | 0.16 ± 0.06 | 0.63 ± 0.47 | 10.98 ± 4.19 | 17.87 ± 4.36 | 0.24 ± 0.11 | 0.77 ± 0.87 | 13.73 ± 12.2 |
2–5 | 0.41 ± 0.28 | 2.01 ± 0.64 | 1.58 ± 1.09 | 2.61 ± 1.12 | 0.68 ± 0.28 | 2.85 ± 2.03 | 7.76 ± 2.92 | |
1–2 | 0.47 ± 0.15 | 2.64 ± 1.33 | 0.87 ± 0.41 | 1.66 ± 0.5 | 1.25 ± 0.59 | 5.30 ± 2.14 | 10.31 ± 5.18 | |
0.5–1 | 1.95 ± 0.77 | 5.47 ± 1.63 | 1.95 ± 0.7 | 3.28 ± 1.29 | 6.57 ± 1.24 | 13.02 ± 4.05 | 14.12 ± 8.99 | |
0.25–0.5 | 4.29 ± 1.23 | 4.65 ± 1.14 | 2.86 ± 1.58 | 4.33 ± 2.23 | 10.16 ± 2.57 | 12.39 ± 3.96 | 9.02 ± 6.77 | |
<0.25 | 92.73 ± 1.19 | 84.60 ± 3.46 | 81.76 ± 6.21 | 70.26 ± 6.01 | 81.09 ± 3.15 | 65.68 ± 7.57 | 45.06 ± 12.15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Wang, Z.; Hu, Y.; Liu, B.; Liu, J. Effectiveness and Durability of Polyacrylamide (PAM) and Polysaccharide (Jag C 162) in Reducing Soil Erosion under Simulated Rainfalls. Water 2018, 10, 257. https://doi.org/10.3390/w10030257
Lu S, Wang Z, Hu Y, Liu B, Liu J. Effectiveness and Durability of Polyacrylamide (PAM) and Polysaccharide (Jag C 162) in Reducing Soil Erosion under Simulated Rainfalls. Water. 2018; 10(3):257. https://doi.org/10.3390/w10030257
Chicago/Turabian StyleLu, Shaojuan, Zhanli Wang, Yaxian Hu, Baoyuan Liu, and Jun’e Liu. 2018. "Effectiveness and Durability of Polyacrylamide (PAM) and Polysaccharide (Jag C 162) in Reducing Soil Erosion under Simulated Rainfalls" Water 10, no. 3: 257. https://doi.org/10.3390/w10030257
APA StyleLu, S., Wang, Z., Hu, Y., Liu, B., & Liu, J. (2018). Effectiveness and Durability of Polyacrylamide (PAM) and Polysaccharide (Jag C 162) in Reducing Soil Erosion under Simulated Rainfalls. Water, 10(3), 257. https://doi.org/10.3390/w10030257