Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Sampling Time
2.3. Laboratory Analysis
2.4. Data Analysis
3. Results
3.1. Changes of Water Level and Water Quality
3.2. Changes of Phytoplankton Assemblages in Relation to Environmental Variables
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Fundamental Parameters | Stage | ||
---|---|---|---|
Before Dam Heightening | After Dam Heightening | ||
Dam height (m) | 162 | 176.6 | |
Normal water level (m) | 157 | 170 | |
Total capacity (billion m3) | 174.5 | 290.5 | |
Dead water level (m) | 140 | 150 | |
Adjustable storage capacity (billion m3) | 98.0~102.2 | 136.6~190.5 | |
Reservoir area (km2) | 745 | 1050 | |
Limit drop depth (m) | 18 | 25 | |
Backwater length (km) | DRH | 177 | 193.6 |
DRD | 80 | 93.5 | |
Bank shoreline length (km) | 4600 | 7000 | |
Capacity ratio | 0.45 | 0.75 |
Variance Index | Df | SS | MS | F value | R2 | p Value |
---|---|---|---|---|---|---|
January | ||||||
Reservoir arm | 1 | 0.4923 | 0.4923 | 2.1661 | 0.06 | 0.022 |
Time | 1 | 2.209 | 2.2090 | 9.7196 | 0.25 | 0.001 |
Residuals | 27 | 6.1364 | 0.2273 | 0.69 | ||
May | ||||||
Reservoir arm | 0.5764 | 0.5764 | 2.1475 | 0.06 | 0.03 | |
Time | 2.5646 | 2.5646 | 9.5547 | 0.25 | 0.001 | |
Residuals | 7.2471 | 0.2684 | 0.7 | |||
July | ||||||
Reservoir arm | 1 | 0.3205 | 0.3205 | 1.0795 | 0.03 | 0.37 |
Time | 1 | 1.9596 | 1.9596 | 6.5992 | 0.2 | 0.001 |
Residuals | 26 | 7.7207 | 0.297 | 0.77 | ||
October | ||||||
Reservoir arm | 1 | 0.2965 | 0.2965 | 0.9312 | 0.03 | 0.499 |
Time | 1 | 1.3193 | 1.3193 | 4.1428 | 0.13 | 0.001 |
Residuals | 26 | 8.2802 | 0.3185 | 0.84 |
Taxa | Division | 2014 | 2015 | 2016 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 7 | 10 | 1 | 5 | 7 | 10 | 1 | 5 | 7 | 10 | ||
Aulacoseira granulata (Ehr.) Simonsen | Bacillariophyta | 30.66 | 5.86 | 0.19 | 0.92 | 7.42 | 0.00 | 0.00 | 0.27 | 11.53 | 17.70 | 2.24 | 0.56 |
Cyclotella sp. | Bacillariophyta | 30.74 | 10.83 | 11.59 | 12.95 | 25.57 | 5.07 | 7.46 | 2.72 | 1.90 | 4.20 | 1.02 | 9.72 |
Cymbella sp. | Bacillariophyta | 0.00 | 0.00 | 0.00 | 14.20 | 0.32 | 0.00 | 6.47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Melosira varians Agardh | Bacillariophyta | 0.39 | 0.18 | 0.16 | 0.74 | 1.41 | 0.50 | 0.04 | 0.00 | 6.82 | 11.14 | 1.73 | 0.71 |
Navicula sp. | Bacillariophyta | 0.13 | 0.92 | 4.31 | 0.28 | 1.59 | 8.58 | 0.00 | 0.00 | 5.10 | 10.00 | 4.36 | 2.52 |
Synedra sp. | Bacillariophyta | 1.65 | 0.00 | 3.96 | 14.00 | 3.01 | 0.25 | 1.01 | 12.35 | 9.78 | 1.46 | 4.86 | 4.43 |
Chlamydomonas sp. | Chlorophyta | 0.48 | 0.00 | 0.00 | 0.00 | 1.76 | 12.67 | 8.63 | 0.00 | 0.45 | 0.00 | 0.50 | 0.00 |
Eudorina elegans Ehr. | Chlorophyta | 0.00 | 1.95 | 4.00 | 7.34 | 6.05 | 21.24 | 0.00 | 5.42 | 0.00 | 6.26 | 3.50 | 11.63 |
Eudorina sp. | Chlorophyta | 0.00 | 0.00 | 14.80 | 4.40 | 0.00 | 5.35 | 0.45 | 1.05 | 0.00 | 0.00 | 1.83 | 0.00 |
Scenedesmus sp. | Chlorophyta | 0.00 | 0.00 | 3.59 | 3.40 | 1.36 | 0.55 | 1.13 | 0.00 | 0.00 | 2.41 | 3.67 | 11.24 |
Lyngbya sp. | Cyanophyta | 0.01 | 0.00 | 0.00 | 0.00 | 0.06 | 0.01 | 0.01 | 26.78 | 0.83 | 0.01 | 0.74 | 13.55 |
Trachelomonas sp. | Euglenophyta | 2.01 | 24.89 | 6.04 | 0.12 | 2.67 | 0.34 | 0.25 | 0.24 | 0.00 | 0.00 | 0.36 | 0.00 |
Ceratium hirundinella (Müll.) Schr. | Pyrrophyta | 0.00 | 0.00 | 0.00 | 1.34 | 0.00 | 0.00 | 9.33 | 0.00 | 0.00 | 3.08 | 22.90 | 0.00 |
Peridinium sp. | Pyrrophyta | 6.95 | 12.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Taxa | Division | Year | Water Level Change | Indicator Value | p Value |
---|---|---|---|---|---|
Trachelomonas sp. | Euglenophyta | 2014 | Before | 0.59 | 0.001 |
Aulacoseira granulata var. angustissima (Müll.) Simonsen | Bacillariophyta | 2014 | Before | 0.48 | 0.001 |
Peridinium sp. | Pyrrophyta | 2014 | Before | 0.27 | 0.001 |
Eudorina sp. | Chlorophyta | 2014 | Before | 0.25 | 0.001 |
Ceratium sp. | Pyrrophyta | 2014 | Before | 0.12 | 0.033 |
Cryptomonas erosa Ehr. | Cryptophyta | 2015 | During | 0.55 | 0.001 |
Chlamydomonas sp. | Chlorophyta | 2015 | During | 0.41 | 0.001 |
Cyclotella sp. | Bacillariophyta | 2015 | During | 0.36 | 0.029 |
Merismopedia elegans Braun. | Cyanophyta | 2015 | During | 0.17 | 0.041 |
Fragilaria sp. | Bacillariophyta | 2016 | After | 0.49 | 0.001 |
Melosira varians Agardh | Bacillariophyta | 2016 | After | 0.43 | 0.001 |
Aulacoseira granulata (Ehr.) Simonsen | Bacillariophyta | 2016 | After | 0.29 | 0.007 |
Pediastrum sp. | Chlorophyta | 2016 | After | 0.08 | 0.023 |
Navicula sp. | Bacillariophyta | 2016 | After | 0.30 | 0.046 |
References
- Naselli-Flores, L.; Barone, R. Water-level fluctuations in Mediterranean reservoirs: Setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 2005, 548, 85–99. [Google Scholar] [CrossRef]
- Zohary, T.; Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Qian, K.M.; Liu, X.; Chen, Y.W. Effects of water level fluctuation on phytoplankton succession in Poyang Lake, China—A five year study. Ecohydrol. Hydrobiol. 2016, 16, 175–184. [Google Scholar] [CrossRef]
- Ji, D.B.; Wells, S.A.; Yang, Z.J.; Liu, D.F.; Huang, Y.L.; Ma, J.; Berger, C.J. Impacts of water level rise on algal bloom prevention in the tributary of Three Gorges Reservoir, China. Ecol. Eng. 2017, 98, 70–81. [Google Scholar] [CrossRef]
- Naselli-Flores, L. Mediterranean climate and eutrophication of reservoirs: Limnological skills to improve management. In Eutrophication: Causes, Consequences and Control; Ansari, A., Singh Gill, S., Lanza, G., Rast, W., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Bond, N.R.; Lake, P.S.; Arthington, A.H. The impacts of drought on freshwater ecosystems: An Australian perspective. Hydrobiologia 2008, 600, 3–16. [Google Scholar] [CrossRef]
- Bates, B. Climate Change and Water: IPCC Technical Paper VI; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Evtimova, V.V.; Donohue, I. Quantifying ecological responses to amplified water level fluctuations in standing waters: An experimental approach. J. Appl. Ecol. 2014, 51, 1282–1291. [Google Scholar] [CrossRef]
- Leira, M.; Cantonati, M. Effects of water-level fluctuations on lakes: An annotated bibliography. Hydrobiologia 2008, 613, 171–184. [Google Scholar] [CrossRef]
- Strayer, D.L.; Findlay, S.E. Ecology of freshwater shore zones. Aquat. Sci. 2010, 72, 127–163. [Google Scholar] [CrossRef]
- Wolin, J.A.; Stone, J.R. Diatoms as indicators of water-level change in freshwater lakes. In The Diatoms: Applications for the Environmental and Earth Sciences; Stoermer, E.F., Smol, J.P., Eds.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Geraldes, A.M.; Boavida, M.J. Seasonal water level fluctuations: Implications for reservoir limnology and management. Lakes Reserv. Res. Manag. 2005, 10, 59–69. [Google Scholar] [CrossRef]
- Vilhena, L.C.; Hillmer, I. The role of climate change in the occurrence of algal blooms: Lake Burragorang, Australia. Limnol. Oceanogr. 2010, 55, 1188–1200. [Google Scholar] [CrossRef]
- Zhang, Q. The South-to-North Water Transfer Project of China: Environmental Implications and Monitoring Strategy. J. Am. Water Resour. Assoc. 2009, 45, 1238–1247. [Google Scholar] [CrossRef]
- Chen, P.; Li, L.; Zhang, H. Spatio-temporal variability in the thermal regimes of the Danjiangkou Reservoir and its downstream river due to the large water diversion project system in central China. Hydrol. Res. 2016, 47, 104–127. [Google Scholar] [CrossRef]
- Li, S.; Cheng, X.; Xu, Z.; Han, H.; Zhang, Q. Spatial and temporal patterns of the water quality in the the Danjiangkou Reservoir, China. Hydrol. Sci. J. 2009, 54, 124–134. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Yue, C.; Zhao, J.; Hu, Z.; Lv, N.; Tang, Y. The spatial pattern of land use/land cover in the water supplying area of the Middle-Route of the South-to-North Water Diversion (MR-SNWD) Project. Acta Geogr. Sin. 2006, 6, 9. [Google Scholar]
- Zhu, M.; Tan, S.; Gu, S.; Zhang, Q. Characteristics of soil erodibility in the the Danjiangkou Reservoir Region, Hubei Province. Chin. J. Soil Sci. 2010, 41, 434–436. [Google Scholar]
- Sicko-Goad, L.; Stoermer, E.F.; Ladewski, B.G. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 1977, 93, 147–163. [Google Scholar] [CrossRef]
- Rott, E. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 1981, 43, 34–62. [Google Scholar] [CrossRef]
- Hu, H.; Wei, Y. The Freshwater Algae of China Systematics, Taxonomy and Ecology; Sciences Press: Beijing, China, 2006. [Google Scholar]
- Chinese Ministry of Environmental Protection (MEP). Water Quality: Determination of Total Phosphorus—Ammonium Molybdate Spectrophotometric Method; National Standard of China GB/T11893-1989; Chinese Ministry of Environmental Protection (MEP): Beijing, China, 1989.
- Chinese Ministry of Environmental Protection (MEP). Water Quality: Determination of Total Nitrogen—Alkaline Potassium Per-Sulfate Digestion Method; National Standards of China HJ636-2012; Chinese Ministry of Environmental Protection (MEP) of China: Beijing, China, 2012.
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.0-10. 2013. Available online: http://CRAN.R-project.org/package=vegan (accessed on 2 August 2017).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics; Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B., Eds.; Stanford University Press: San Francisco, CA, USA, 1960. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing. 2008. Available online: http://www.R-project.org (accessed on 2 August 2017).
- Wantzen, K.M.; Rothhaupt, K.O.; Mörtl, M.; Cantonati, M.; László, G.; Fischer, P. Ecological effects of water-level fluctuations in lakes: An urgent issue. Hydrobiologia 2008, 613, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Scharf, S.; Refilling, W. Ageing and water quality management of Brucher Reservoir. Lakes Reserv. Res. Manag. 2002, 7, 13–23. [Google Scholar] [CrossRef]
- Maria, A.M.; Bachisio, M.; Jan, K.; Paola, B.; Nicola, S.; Tomasa, V.; Antonella, L. Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Sci. Rep. 2015, 5, 17964. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Vargas, R.; Bond-Lamberty, B.; Turetsky, M.R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef] [Green Version]
- Meisner, A.; Bååth, E.; Rousk, J. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem. 2013, 66, 188–192. [Google Scholar] [CrossRef]
- Gordon, H.; Haygarth, P.M.; Bardgett, R.D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 2008, 40, 302–311. [Google Scholar] [CrossRef]
- Sommer, U.; Gliwicz, Z.M.; Lampert, W.; Duncan, A. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 1986, 106, 433–471. [Google Scholar]
- Reynolds, C.F. The Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Stevenson, R.J.; Bothwell, M.L.; Lowe, R.L. Algal Ecology: Freshwater Benthic Ecosystem; Academic Press: Manhattan, NY, USA, 1996. [Google Scholar]
- Beer, S.V.; Spencer, W.; Bowes, G. Photosynthesis and growth of the filamentous blue-green alga Lyngbya birgei in relation to its environment. J. Aquat. Plant Manag. 1986, 24, 61–65. [Google Scholar]
- Hudon, C.; De Sève, M.; Cattaneo, A. Increasing occurrence of the benthic filamentous cyanobacterium Lyngbya wollei: A symptom of freshwater ecosystem degradation. Freshw. Sci. 2014, 33, 606–618. [Google Scholar] [CrossRef]
- Bridgeman, T.B.; Penamon, W.A. Lyngbya wollei in western Lake Erie. J. Gt. Lakes Res. 2010, 36, 167–171. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Evans, W.R.; Yin, Q.Q.; Bell, P.; Moczydlowski, E. Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl. Environ. Microbiol. 1997, 63, 3104–3110. [Google Scholar] [PubMed]
- Gao, W.L.; Chen, Z.J.; Li, Y.Y.; Pan, Y.D.; Zhu, J.Y.; Guo, S.J.; Huang, J.; Hu, L.Q. Bioassessment of a drinking water reservoir using plankton: High throughput sequencing vs. traditionally morphological method. Water 2018, 10, 82. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Guo, S.; Li, Y.; Yin, W.; Qi, P.; Shi, J.; Hu, L.; Li, B.; Bi, S.; Zhu, J. Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir. Water 2018, 10, 256. https://doi.org/10.3390/w10030256
Pan Y, Guo S, Li Y, Yin W, Qi P, Shi J, Hu L, Li B, Bi S, Zhu J. Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir. Water. 2018; 10(3):256. https://doi.org/10.3390/w10030256
Chicago/Turabian StylePan, Yangdong, Shijun Guo, Yuying Li, Wei Yin, Pengcheng Qi, Jianwei Shi, Lanqun Hu, Bing Li, Shengge Bi, and Jingya Zhu. 2018. "Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir" Water 10, no. 3: 256. https://doi.org/10.3390/w10030256
APA StylePan, Y., Guo, S., Li, Y., Yin, W., Qi, P., Shi, J., Hu, L., Li, B., Bi, S., & Zhu, J. (2018). Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir. Water, 10(3), 256. https://doi.org/10.3390/w10030256