Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Xingu Basin of Mato Grosso
2.2. Integrated BIosphere Simulator (IBIS)
2.3. Water Footprint Sustainability Assessment
2.3.1. Goal and Scope Definition
2.3.2. Water Footprint Accounting
Green Water Footprint of Agriculture in the Context of Basin Land Use Systems
Blue Water Footprint of Agriculture
Domestic and Industrial Blue Water Footprints
2.3.3. Water Scarcity Calculation
2.3.4. Interpretation and Response Formulation through Scenarios
2.3.5. Data Processing and Sensitivity Analysis
3. Results
3.1. Past and Future Water Footprints
3.2. Blue and Green Water Availability and Scarcity
4. Discussion
4.1. Agricultural Development and Water Resources
4.2. Changes in Water Scarcity with Land and Water Management
4.3. Response Formulation and Study Limitations
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Simon, M.F.; Garagorry, F.L. The expansion of agriculture in the Brazilian Amazon. Environ. Conserv. 2006, 32, 203. [Google Scholar] [CrossRef]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 024002. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Richards, P.; Pellegrina, H.; VanWey, L.; Spera, S. Soybean Development: The Impact of a Decade of Agricultural Change on Urban and Economic Growth in Mato Grosso, Brazil. PLoS ONE 2015, 10, e0122510. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Galford, G.L.; Melillo, J.; Mustard, J.F.; Cerri, C.E.P.; Cerri, C.C. The Amazon Frontier of Land-Use Change: Croplands and Consequences for Greenhouse Gas Emissions. Earth Interact. 2010, 14, 1–24. [Google Scholar] [CrossRef]
- Coe, M.T.; Costa, M.H.; Soares-Filho, B.S. The influence of historical and potential future deforestation on the stream flow of the Amazon River—Land surface processes and atmospheric feedbacks. J. Hydrol. 2009, 369, 165–174. [Google Scholar] [CrossRef]
- Silvério, D.V.; Brando, P.M.; Macedo, M.N.; Beck, P.S.A.; Bustamante, M.; Coe, M.T. Agricultural expansion dominates climate changes in southeastern Amazonia: The overlooked non-GHG forcing. Environ. Res. Lett. 2015, 10, 104015. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Johnson, M.S.; Donner, S.D. Water use by terrestrial ecosystems: Temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. Environ. Res. Lett. 2012, 7, 024024. [Google Scholar] [CrossRef]
- António Sumila, T.C.; Pires, G.F.; Fontes, V.C.; Costa, M.H. Sources of Water Vapor to Economically Relevant Regions in Amazonia and the Effect of Deforestation. J. Hydrometeorol. 2017, 18, 1643–1655. [Google Scholar] [CrossRef]
- Oliveira, L.J.C.; Costa, M.H.; Soares-Filho, B.S.; Coe, M.T. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ. Res. Lett. 2013, 8, 024021. [Google Scholar] [CrossRef]
- Stickler, C.M.; Coe, M.T.; Costa, M.H.; Nepstad, D.C.; McGrath, D.G.; Dias, L.C.P.; Rodrigues, H.O.; Soares-Filho, B.S. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl. Acad. Sci. USA 2013, 110, 9601–9606. [Google Scholar] [CrossRef] [PubMed]
- Castello, L.; Macedo, M.N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Chang. Biol. 2016, 22, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Lathuillière, M.J.; Coe, M.T.; Johnson, M.S. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: What could irrigated agriculture mean for Amazonia? Hydrol. Earth Syst. Sci. 2016, 20, 2179–2194. [Google Scholar] [CrossRef]
- IBGE. Banco de Dados Agregados. Available online: www.sidra.ibge.gov.br/ (accessed on 1 June 2016).
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual; Earthscan: London, UK, 2011; ISBN 9781849712798. [Google Scholar]
- Chenoweth, J.; Hadjikakou, M.; Zoumides, C. Quantifying the human impact on water resources: A critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 2014, 18, 2325–2342. [Google Scholar] [CrossRef] [Green Version]
- Quinteiro, P.; Ridoutt, B.G.; Arroja, L.; Dias, A.C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: A review. Int. J. Life Cycle Assess. 2017. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water Footprint Assessment: Evolvement of a New Research Field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef]
- Falkenmark, M.; Rockström, J. The New Blue and Green Water Paradigm: Breaking New Ground for Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2006, 132, 129–132. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- Miguel Ayala, L.; van Eupen, M.; Zhang, G.; Pérez-Soba, M.; Martorano, L.G.; Lisboa, L.S.; Beltrao, N.E. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios. Sci. Total Environ. 2016, 569–570, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 2015, 19, 4581–4608. [Google Scholar] [CrossRef]
- ANA. Plano Estratégico de Recursos Hídricos dos Afluentes da Margem Direita do Rio Amazonas; Agência Nacional de Águas: Brasilia, Brazil, 2013. [Google Scholar]
- Velasquez, H.Q.C.; Bernasconi, P. Fique por Dentro: A Bacia do Rio Xingu em Mato Grosso; Instituto Socioambiental, Instituto Centro de Vida: São Paulo, Brazil, 2010. [Google Scholar]
- Panday, P.K.; Coe, M.T.; Macedo, M.N.; Lefebvre, P.; Castanho, A.D.d.A. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 2015, 523, 822–829. [Google Scholar] [CrossRef]
- Macedo, M.N.; Coe, M.T.; DeFries, R.; Uriarte, M.; Brando, P.M.; Neill, C.; Walker, W.S. Land-use-driven stream warming in southeastern Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120153. [Google Scholar] [CrossRef] [PubMed]
- ANA. Hidroweb. Available online: http://hidroweb.ana.gov.br/ (accessed on 1 June 2016).
- Foley, J.A.; Kucharik, C.J.; Polzin, D. Integrated Biosphere Simulator Model (IBIS), Version 2.5; ORNL DAAC: Oak Ridge, TN, USA, 2005. [Google Scholar]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Foley, J.A.; Delire, C.; Fisher, V.A.; Coe, M.T.; Lenters, J.D.; Young-Molling, C.; Ramankutty, N. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Glob. Biogeochem. Cycles 2000, 14, 795–825. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Graesser, J.; Ramankutty, N. Detection of cropland field parcels from Landsat imagery. Remote Sens. Environ. 2017, 201, 165–180. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Voll, E.; Garcia, R.A.; Ramos, C.A.; McDonald, A.J.; Lefebvre, P.A.; Schlesinger, P. LBA-ECO LC-14 Modeled Deforestation Scenarios, Amazon Basin: 2002–2050; ORNL DAAC: Oak Ridge, TN, USA, 2013. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Johnson, M.S.; Galford, G.L.; Couto, E.G. Environmental footprints show China and Europe’s evolving resource appropriation for soybean production in Mato Grosso, Brazil. Environ. Res. Lett. 2014, 9, 074001. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Bulle, C.; Johnson, M.S. Land Use in LCA: Including Regionally Altered Precipitation to Quantify Ecosystem Damage. Environ. Sci. Technol. 2016, 50, 11769–11778. [Google Scholar] [CrossRef] [PubMed]
- Spera, S.A.; Cohn, A.S.; VanWey, L.K.; Mustard, J.F.; Rudorff, B.F.; Risso, J.; Adami, M. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 2014, 9, 064010. [Google Scholar] [CrossRef]
- Lathuillière, M.J. Harmonizing Water Footprint Assessment for Agricultural Production in Southern Amazonia; The University of British Columbia: Vancouver, BC, Canada, 2018. [Google Scholar]
- Mesa, D.; Muniz, E.; Souza, A.; Geffroy, B. Broiler-Housing Conditions Affect the Performance. Rev. Bras. Ciência Avícola 2017, 19, 263–272. [Google Scholar] [CrossRef]
- Palhares, J.C.P. Pegada hídrica dos suínos abatidos nos Estados da Região Centro-Sul do Brasil. Acta Sci. Anim. Sci. 2011, 33, 309–314. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- FAO. Guidelines for Water Use Assessment of Livestock Production Systems and Supply Chains; Livestock Environmental Assessment and Performance (LEAP) Partnership: Rome, Italy, 2018. [Google Scholar]
- Smakhtin, V.; Revenga, C.; Döll, P. A Pilot Global Assessment of Environmental Water Requirements and Scarcity. Water Int. 2004, 29, 307–317. [Google Scholar] [CrossRef]
- Richter, B.D.; Davis, M.M.; Apse, C.; Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 2012, 28, 1312–1321. [Google Scholar] [CrossRef]
- Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos. Lei no 12.651, de 25 de maio de 2012; Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos: Brasilia, Brazil, 2012. [Google Scholar]
- MAPA. Projeções do Agronegócio: Brasil 2015/16 a 2025/26 Projeções de Longo Prazo; Ministério da Agricultura, Pecuária e Abastecimento: Brasilia, Brazil, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R package Version 2.5-8. Available online: https://cran.r-project.org/package=raster (accessed on 1 June 2016).
- Bivand, R.S.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Pebesma, E.J.; Bivand, R.S. Classes and Methods for Spatial Data in R. R News 5 (2). Available online: https://cran.r-project.org/doc/Rnews/ (accessed on 1 June 2016).
- Bivand, R.; Keitt, T.; Rowlinsgon, B. Rgdal: Bindings for the Geospatial Data Abstraction Library. R Package Version 1.2-7. Available online: https://cran.r-project.org/package=rgdal (accessed on 1 June 2016).
- Bivand, R.; Lewin-Koh, N. Maptools: Tools for Reading and Handling Spatial Objects. R package version 0.9-2. Available online: https://cran.r-project.org/package=maptools (accessed on 1 June 2016).
- Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R Package Version 1.16. Available online: https://cran.r-project.org/package=ncdf4 (accessed on 1 June 2016).
- Callow, J.N.; Smettem, K.R.J. The effect of farm dams and constructed banks on hydrologic connectivity and runoff estimation in agricultural landscapes. Environ. Model. Softw. 2009, 24, 959–968. [Google Scholar] [CrossRef]
- Coe, M.T.; Brando, P.M.; Deegan, L.A.; Macedo, M.N.; Neill, C.; Silvério, D.V. The Forests of the Amazon and Cerrado Moderate Regional Climate and Are the Key to the Future. Trop. Conserv. Sci. 2017, 10, 1–6. [Google Scholar] [CrossRef]
- Arvor, D.; Dubreuil, V.; Ronchail, J.; Simões, M.; Funatsu, B.M. Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int. J. Climatol. 2014, 34, 2622–2633. [Google Scholar] [CrossRef]
- Baillie, C. Assessment of Evaporation Losses and Evaporation Mitigation Technologies for on Farm Water Storages across Australia. Coop. Res. Cent. Irrig. Futures Irrig. Matters Ser. 2008, 05/08, 1–52. [Google Scholar]
- Da Silva, V.; de Oliveira, S.; Hoekstra, A.; Dantas Neto, J.; Campos, J.; Braga, C.; de Araújo, L.; Aleixo, D.; de Brito, J.; de Souza, M.; et al. Water Footprint and Virtual Water Trade of Brazil. Water 2016, 8, 517. [Google Scholar] [CrossRef]
- FABOV. Diagnostico da Cadeia Produtiva Agroindustrial da Bovinocultura de Corte do Estado de Mato Grosso; Fundo de Apoio à Bovinocultura de Corte: Cuiabá, Mato Grosso, Brazil, 2007. [Google Scholar]
- MAPA. Agrostat. Available online: http://indicadores.agricultura.gov.br/agrostat (accessed on 1 June 2016).
- Ercin, A.E.; Chico, D.; Chapagain, A.K. Dependencies of Europe’s Economy on Other Parts of the World in Terms of Water Resources. Available online: http://waterfootprint.org/media/downloads/Imprex-D12-1_final.pdf (accessed on 1 June 2016).
- Vanham, D.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of the EU for different diets. Ecol. Indic. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; Seroa da Motta, R.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- ANA & Embrapa/CNPMS. Levantamento da Agricultura Irrigada por Pivôs Centrais no Brasil—ano 2014; ANA and Embrapa: Brasilia, Brazil, 2016. [Google Scholar]
- FEALQ. Análise Territorial Para o Desenvolvimento da Agricultural Irrigada no Brasil; Fundação de Estudos Agrários Luiz de Queiros: Piracicaba, São Paulo, Brazil, 2014. [Google Scholar]
- Palhares, J.C.P.; Morelli, M.; Junior, C.C. Impact of roughage-concentrate ratio on the water footprints of beef feedlots. Agric. Syst. 2017, 155, 126–135. [Google Scholar] [CrossRef]
- Pokhrel, Y.N.; Fan, Y.; Miguez-Macho, G. Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer. Environ. Res. Lett. 2014, 9, 84004. [Google Scholar] [CrossRef]
- Noojipady, P.; Morton, C.D.; Macedo, N.M.; Victoria, C.D.; Huang, C.; Gibbs, K.H.; Bolfe, L.E. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 2017, 12, 025004. [Google Scholar] [CrossRef]
- Khanna, J.; Medvigy, D.; Fueglistaler, S.; Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Chang. 2017, 7, 200–204. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.M.J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 2017, 8, 14681. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.S.; Fu, R.; Worden, J.R.; Chakraborty, S.; Clinton, N.E.; Risi, C.; Sun, Y.; Yin, L. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 2017, 114, 8481–8486. [Google Scholar] [CrossRef] [PubMed]
- Keys, P.W.; Wang-Erlandsson, L.; Gordon, L.J. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service. PLoS ONE 2016, 11, e0151993. [Google Scholar] [CrossRef] [PubMed]
- Bagley, J.E.; Desai, A.R.; Harding, K.J.; Snyder, P.K.; Foley, J.A. Drought and Deforestation: Has Land Cover Change Influenced Recent Precipitation Extremes in the Amazon? J. Clim. 2014, 27, 345–361. [Google Scholar] [CrossRef]
- Berger, M.; van der Ent, R.; Eisner, S.; Bach, V.; Finkbeiner, M. Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environ. Sci. Technol. 2014, 48, 4521–4528. [Google Scholar] [CrossRef] [PubMed]
- van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef]
- Keys, P.; Wang-Erlandsson, L.; Gordon, L.; Galaz, V.; Ebbesson, J. Approaching moisture recycling governance. Glob. Environ. Chang. 2017, 45, 15–23. [Google Scholar] [CrossRef]
- Latawiec, A.E.; Strassburg, B.B.N.; Silva, D.; Alves-Pinto, H.N.; Feltran-Barbieri, R.; Castro, A.; Iribarrem, A.; Rangel, M.C.; Kalif, K.A.B.; Gardner, T.; et al. Improving land management in Brazil: A perspective from producers. Agric. Ecosyst. Environ. 2017, 240, 276–286. [Google Scholar] [CrossRef]
- Garcia, E.; Ramos Filho, F.; Mallmann, G.; Fonseca, F. Costs, Benefits and Challenges of Sustainable Livestock Intensification in a Major Deforestation Frontier in the Brazilian Amazon. Sustainability 2017, 9, 158. [Google Scholar] [CrossRef]
- Arvor, D.; Tritsch, I.; Barcellos, C.; Jégou, N.; Dubreuil, V. Land use sustainability on the South-Eastern Amazon agricultural frontier: Recent progress and the challenges ahead. Appl. Geogr. 2017, 80, 86–97. [Google Scholar] [CrossRef]
- Neill, C.; Jankowski, K.; Brando, P.M.; Coe, M.T.; Deegan, L.A.; Macedo, M.N.; Riskin, S.H.; Porder, S.; Elsenbeer, H.; Krusche, A.V. Surprisingly Modest Water Quality Impacts From Expansion and Intensification of Large-Sscale Commercial Agriculture in the Brazilian Amazon-Cerrado Region. Trop. Conserv. Sci. 2017, 10, 1–5. [Google Scholar] [CrossRef]
- Hayhoe, S.J.; Neill, C.; Porder, S.; McHorney, R.; Lefebvre, P.; Coe, M.T.; Elsenbeer, H.; Krusche, A.V. Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Glob. Chang. Biol. 2011, 17, 1821–1833. [Google Scholar] [CrossRef]
- Pokhrel, Y.N.; Fan, Y.; Miguez-Macho, G.; Yeh, P.J.F.; Han, S.C. The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J. Geophys. Res. Atmos. 2013, 118, 3233–3244. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
Scenario | Year | Human Population; Industrial Workers | Livestock Population | Description |
---|---|---|---|---|
BAURCP4.5 BAURCP8.5 | 2030 | 336,335; 211,722 | 5,233,040 cattle; 74,069 pigs; 792,674 chicken | Human population increases at historic growth rate; Industry grows proportionally to human settlement; Soybean production requires 2.8 Mha of land; Cattle population requires 4.4 Mha of pasture |
BAURCP4.5 BAURCP8.5 | 2050 | 568,407; 357,809 | 8,372,864 cattle; 114,066 pigs; 1,173,157 chicken | Human population increases at historic growth rate; Industry grows proportionally to human settlement; Soybean production requires 3.8 Mha of land; Cattle population requires 7.0 Mha of pasture |
GOVRCP4.5 GOVRCP8.5 | 2030 | 336,335; 211,722 | 5,233,040 cattle; 74,069 pigs; 792,674 chicken | Human population increases at historic growth rate; Industry grows proportionally to human settlement; Soybean production requires 2.8 Mha of land; Cattle population is requires 4 Mha of pasture |
GOVRCP4.5 GOVRCP8.5 | 2050 | 568,407; 357,809 | 8,372,864 cattle; 114,066 pigs; 1,173,157 chicken | Human population increases at historic growth rate; Industry grows proportionally to human settlement; Soybean production requires 3.8 Mha of land; Cattle population is split between pasture (5.2 million) and confinement (3.1 million); soybean is irrigated 90 mm in September–October. |
Description | The Green Option | The Blue Option | ||
---|---|---|---|---|
Crops | Cattle | Crops | Cattle | |
Strategy | Increase production by increasing cropped area | Intensify production on current land | Increase crop frequency (triple cropping) | Intensify production through confinement |
Land use | Expansion of crops into pastureland | Concentration of cattle on current and more productive pastureland | Cropland expansion into pastureland | Increase confinement of cattle |
Water use | Reallocate water from cattle to cropland | Reduce water use for a more productive pasture; Feed sourced off-farm (virtual water transfers); Increase small reservoir capacity | Use irrigation for early soybean planting and include a dry season irrigated crop | Increase small reservoir capacity; Supplemental drinking from surface and groundwater in confined systems |
Effects on blue water use and scarcity | Blue water consumption increases with animal population, reservoir evaporation and groundwater use, but remains within sustainable limits | Blue water consumption approaches sustainable limits in the dry season with potential effects on downstream water availability | ||
Effects on green water use and scarcity | Green water use increases for crops and decreases for pasture keeping green water scarcity constant; Green water availability may change in the long-term due to local (land use) and global (CO2 emissions) climate change and additional evaporation from farm reservoirs increase water vapor flows to the atmosphere; Changes in precipitation affect blue and green water availability in- and outside the basin. | Green water use increases for crops and decreases for pasture keeping green water scarcity constant; Green water availability may change in the long-term due to local (land use) and global (CO2 emissions) climate change but additional ET from crop irrigation and farm reservoirs increase water vapor flows to the atmosphere; Changes in precipitation affect blue and green water availability in- and outside the basin. | ||
Water management considerations | Improve efficiency of blue water use, especially the reduction of evaporation from farm reservoirs; Consider effects of land (precipitation and runoff) beyond the basin; Integrate land and water policies. | Improve efficiencies in blue water use for irrigation and confined livestock; Groundwater management or the use of old farm reservoirs could be used without affecting runoff; Consider effects of land use on water availability, especially the effects of additional water vapor supply to the atmosphere. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lathuillière, M.J.; Coe, M.T.; Castanho, A.; Graesser, J.; Johnson, M.S. Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment. Water 2018, 10, 349. https://doi.org/10.3390/w10040349
Lathuillière MJ, Coe MT, Castanho A, Graesser J, Johnson MS. Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment. Water. 2018; 10(4):349. https://doi.org/10.3390/w10040349
Chicago/Turabian StyleLathuillière, Michael J., Michael T. Coe, Andrea Castanho, Jordan Graesser, and Mark S. Johnson. 2018. "Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment" Water 10, no. 4: 349. https://doi.org/10.3390/w10040349
APA StyleLathuillière, M. J., Coe, M. T., Castanho, A., Graesser, J., & Johnson, M. S. (2018). Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment. Water, 10(4), 349. https://doi.org/10.3390/w10040349