Assessing Aquifer Salinization with Multiple Techniques along the Southern Caspian Sea Shore (Iran)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Groundwater Heads and Quality Data
2.3. Analytical Methods
2.4. Vertical Electric Sounding
2.5. Transient Electromagnetic Sounding
2.6. Methods’ Evaluation Using Statistical Operators
3. Results and Discussion
3.1. Groundwater Flow Directions and Quality
3.2. Comparison of the Analytical Solution, VES, and TEM Results
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barlow, P.M.; Reichard, E.G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Custodio, E.; Bruggeman, G.A. Groundwater Problems in Coastal Areas. Studies and Reports in Hydrology 45; UNESCO: Paris, France, 1987; pp. 15–88. ISBN 92-3-10241 5-9. [Google Scholar]
- Nowroozi, A.A.; Horrocks, S.B.; Henderson, P. Salt water intrusion into the freshwater aquifer in the eastern shore of Virginia: A reconnaissance electrical resistivity survey. J. Appl. Geophys. 1999, 42, 1–22. [Google Scholar] [CrossRef]
- Voss, C.I.; Souza, W.R. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-salt water transition zone. Water Resour. Res. 1987, 23, 1851–1866. [Google Scholar] [CrossRef]
- Essaid, H. A multilayered sharp interface model of coupled freshwater and salt water flow in coastal systems: Model development and application. Water Resour. Res. 1990, 26, 1431–1454. [Google Scholar] [CrossRef]
- Henry, H. Salt Intrusion into Fresh-Water Aquifers. J. Geophys. Res. 1959, 64, 1911–1919. [Google Scholar] [CrossRef]
- Van der Veer, P. Analytical solution for steady interface flow in a coastal aquifer involving phreatic surface with precipitation. J. Hydrol. 1976, 34, 1–11. [Google Scholar] [CrossRef]
- Badon-Ghyben, W. Nota in Verband Met de Voorgenomen Put Boring Nabij Amsterdam (Notes on the Probable Results of the Proposed Well Drilling Near Amsterdam). Kon. Inst. Ing. Tijdschr. Hague 1889, 21, 8–22. [Google Scholar]
- Herzberg, A. Die Wasserversorgung einiger Nordseebäder (The water supply on parts of the North Sea coast). J. Gasbeleucht. Wasserversorg. 1901, 44, 815–819. [Google Scholar]
- Glover, R.E. The pattern of fresh-water flow in a coastal aquifer. J. Geophys. Res. 1959, 64, 457–459. [Google Scholar] [CrossRef]
- Bear, J.; Dagan, J. Some exact solutions of interface problems by means of the hodograph method. J. Geophys. Res. 1964, 69, 1563–1572. [Google Scholar] [CrossRef]
- De Josselin de Jong, G. A many valued hodograph in an interface problem. Water Resour. Res. 1965, 1, 543–555. [Google Scholar] [CrossRef]
- Verruijt, A. An interface problem with a source and a sink in the heavy fluid. J. Hydrol. 1969, 8, 197–206. [Google Scholar] [CrossRef]
- Himi, M.; Tapias, J.; Benabdelouahab, S.; Salhi, A.; Rivero, L.; Elgettafi, M.; El Mandoure, A.; Stitou, J.; Casas, A. Geophysical characterization of saltwater intrusion in a coastal aquifer: The case of Martil-Alila plain (North Morocco). J. Afr. Earth Sci. 2017, 126, 136–147. [Google Scholar] [CrossRef]
- Colombani, N.; Osti, A.; Volta, G.; Mastrocicco, M. Impact of climate change on salinization of coastal water resources. Water Resour. Manag. 2016, 30, 2483–2496. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N.; Sbarbati, C.; Petitta, M. Assessing the effect of saltwater intrusion on petroleum hydrocarbons plumes via numerical modelling. Water Air Soil Pollut. 2012, 223, 4417–4427. [Google Scholar] [CrossRef]
- Oude Essink, G.H.P.; van Baaren, E.S.; de Louw, P.G.B. Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Water Resour. Res. 2010, 46, W00F04. [Google Scholar] [CrossRef]
- Vandenbohede, A.; Hinsby, K.; Courtens, C.; Lebbe, L. Flow and transport model of a polder area in the Belgian coastal plain: Example of data integration. Hydrogeol. J. 2011, 19, 1599–1615. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- De Breuck, W.; De Moor, G. The water table aquifer in the eastern coastal area of Belgium. Hydrol. Sci. J. 1969, 14, 137–155. [Google Scholar] [CrossRef]
- Adepelumi, A.A.; Ako, B.D.; Ajayi, T.R.; Afolabi, O.; Omotoso, E.J. Delineation of saltwater intrusion into the freshwater aquifer of Lekki Peninsula, Lagos, Nigeria. Environ. Geol. 2009, 56, 927–933. [Google Scholar] [CrossRef]
- Choudhury, K.; Saha, D.K. Integrated Geophysical and Chemical Study of Saline Water Intrusion. Groundwater 2004, 42, 671–677. [Google Scholar] [CrossRef]
- Siemon, B.; Christiansen, A.V.; Auken, E. A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf. Geophys. 2009, 7, 629–646. [Google Scholar] [CrossRef]
- Kontar, E.A.; Ozorovich, Y.R. Geo-electromagnetic survey of the fresh/salt water interface in the coastal southeastern Sicily. Cont. Shelf Res. 2006, 26, 843–851. [Google Scholar] [CrossRef]
- Leroy, S.A.G.; Marret, F.; Gibert, E.; Chalié, F.; Reyss, J.L.; Arpe, K. River inflow and salinity changes in the Caspian Sea during the last 5500 years. Quat. Sci. Rev. 2007, 26, 3359–3383. [Google Scholar] [CrossRef]
- Kosarev, A.N.; Yablonskaya, E.A. The Caspian Sea; SPB Academic Publishing: The Hague, The Netherlands, 1994; p. 259. ISBN 9051030886. [Google Scholar]
- Khairy, H.; Janardhana, M.R. Hydrogeochemical features of groundwater of semi-confined coastal aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran. Environ. Monit. Assess. 2013, 185, 9237–9264. [Google Scholar] [CrossRef] [PubMed]
- Gholami, V.; Yousefi, Z.; Rostami, H.Z. Modeling of ground water salinity on the Caspian southern coasts. Water Resour. Manag. 2010, 24, 1415–1424. [Google Scholar] [CrossRef]
- Colombani, N.; Osti, A.; Volta, G.; Mastrocicco, M. Misleading reconstruction of seawater intrusion via integral depth sampling. J. Hydrol. 2016, 536, 320–326. [Google Scholar] [CrossRef]
- Larsen, F.; Tran, L.V.; Van Hoang, H.; Tran, L.T.; Christiansen, A.V.; Pham, N.Q. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat. Geosci. 2017, 10, 376–381. [Google Scholar] [CrossRef]
- Luo, X.; Kwok, K.L.; Liu, Y.; Jiao, J. A Permanent Multilevel Monitoring and Sampling System in the Coastal Groundwater Mixing Zones. Groundwater 2017, 55, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M. Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J. Geodyn. 1996, 21, 1–33. [Google Scholar] [CrossRef]
- Post, V.E.A.; Kooi, H.; Simmons, C.T. Using hydraulic head measurements in variable-density ground water flow analyses. Groundwater 2007, 45, 664–671. [Google Scholar] [CrossRef] [PubMed]
- APHA Standard Methods for the Examination of Water and Waste Water, 20th ed.; American Public Health Association: Washington, DC, USA, 1995; p. 100.
- Mohamed, A.M.O. Arid Land Hydrogeology: In Search of a Solution to a Threatened Resource; CRC Press: Boca Raton, FL, USA, 2006; p. 170. ISBN 9780415411271. [Google Scholar]
- Mastrocicco, M.; Giambastiani, B.M.S.; Severi, P.; Colombani, N. The importance of data acquisition techniques in saltwater intrusion monitoring. Water Resour. Manag. 2012, 26, 2851–2866. [Google Scholar] [CrossRef]
- Anderson, W.P., Jr.; Evans, D.G.; Snyder, S.W. The effects of Holocene barrier-island evolution on water-table elevations, Hatteras Island, North Carolina, USA. Hydrogeol. J. 2000, 8, 390–404. [Google Scholar] [CrossRef]
- Fitterman, D.V.; Stewart, M.T. Transient electromagnetic sounding for groundwater. Geophysics 1986, 51, 995–1005. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar]
- Motevalli, A.; Moradi, H.R.; Javadi, S.A. Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J. Hydrol. 2018, 557, 753–773. [Google Scholar] [CrossRef]
- Naderi Beni, A.; Lahijani, H.; Mousavi Harami, R.; Arpe, K.; Leroy, S.A.G.; Marriner, N.; Berberian, M.; Andrieu-Ponel, V.; Djamali, M.; Mahboubi, A.; et al. Caspian sea-level changes during the last millennium: Historical and geological evidence from the south Caspian Sea. Clim. Past 2013, 9, 1645–1665. [Google Scholar] [CrossRef]
- Medvedev, I.P.; Kulikov, E.A.; Rabinovich, A.B. Tidal oscillations in the Caspian Sea. Oceanology 2017, 57, 360–375. [Google Scholar] [CrossRef]
- Comte, J.C.; Banton, O. Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
Site Name | Section | X0 (May 2015) m from the Coast | X0 (October 2015) m from the Coast |
---|---|---|---|
Site A (Nur) | A1 | 19.84 | 19.05 |
A2 | 6.73 | 6.56 | |
A3 | 18.77 | 17.65 | |
Site B (Mahmudabad) | B1 | 8.85 | 8.69 |
B2 | 12.37 | 12.14 | |
B3 | 8.42 | 8.18 | |
Site C (West-Babolsar) | C1 | 0.15 | 0.13 |
C2 | 1.93 | 1.72 | |
C3 | 0.94 | 0.81 | |
Site D (East-Babolsar) | D1 | 2.95 | 2.15 |
D2 | 1.04 | 0.97 | |
D3 | 0.95 | 0.69 |
Site Name | Method | MAE (m) | RMSE (m2) | PBIAS (m) | d (-) |
---|---|---|---|---|---|
Site A (Nur) | AS | 47.4 | 56.8 | −36.2 | 0.49 |
VES | 30.7 | 35.6 | −12.2 | 0.72 | |
TEM | 8.4 | 10.2 | −4.4 | 0.98 | |
Site B (Mahmudabad) | AS | 37.3 | 44.2 | −33.1 | 0.67 |
VES | 26.7 | 31.6 | −13.8 | 0.89 | |
TEM | 10.5 | 12.3 | +1.6 | 0.96 | |
Site C (West-Babolsar) | AS | 42.1 | 57.6 | −35.5 | 0.49 |
VES | 27.1 | 41.2 | −12.6 | 0.52 | |
TEM | 5.1 | 6.7 | +0.1 | 0.97 | |
Site D (East-Babolsar) | AS | 58.6 | 83.9 | −96.1 | 0.13 |
VES | 5.9 | 10.5 | −7.1 | 0.96 | |
TEM | 1.6 | 2.2 | −0.5 | 0.99 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golshan, M.; Colombani, N.; Mastrocicco, M. Assessing Aquifer Salinization with Multiple Techniques along the Southern Caspian Sea Shore (Iran). Water 2018, 10, 348. https://doi.org/10.3390/w10040348
Golshan M, Colombani N, Mastrocicco M. Assessing Aquifer Salinization with Multiple Techniques along the Southern Caspian Sea Shore (Iran). Water. 2018; 10(4):348. https://doi.org/10.3390/w10040348
Chicago/Turabian StyleGolshan, Mohammad, Nicolò Colombani, and Micòl Mastrocicco. 2018. "Assessing Aquifer Salinization with Multiple Techniques along the Southern Caspian Sea Shore (Iran)" Water 10, no. 4: 348. https://doi.org/10.3390/w10040348
APA StyleGolshan, M., Colombani, N., & Mastrocicco, M. (2018). Assessing Aquifer Salinization with Multiple Techniques along the Southern Caspian Sea Shore (Iran). Water, 10(4), 348. https://doi.org/10.3390/w10040348