Delineation of Suitable Zones for the Application of Managed Aquifer Recharge (MAR) in Coastal Aquifers Using Quantitative Parameters and the Analytical Hierarchy Process
Abstract
:1. Introduction
- (a)
- MAR can be applied in urban areas,
- (b)
- Water losses are negligible compared to surface storage,
- (c)
- MAR requires less surface area than surface storage,
- (d)
- The reallocation of existing wells is avoided.
- The availability of sites suitable for MAR application,
- The presence of water sources,
- A favorable hydrogeological environment,
- Optimal hydrodynamic conditions of the aquifer,
- Results of the cost–benefit evaluation.
Literature Review
2. Methodology
2.1. Anthemountas Coastal Aquifer
2.2. Site Selection Index to Apply MAR
2.3. Weight Definition and Validation of the Model
3. Results and Discussion
3.1. Geomorphological
3.1.1. Topographic Slope
3.1.2. Shore (Distance)
3.1.3. Drainage Network (Distance)
3.2. Hydrogeological
3.2.1. Depth of Groundwater
3.2.2. Piezometric Head
3.2.3. Vadose Zone
3.2.4. Groundwater Quality
3.2.5. Transmissivity
3.3. Infrastructures
3.3.1. Water Availability
3.3.2. Main Roads
3.4. MAR Suitability Map and Validation of the Index
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kazakis, N.; Pavlou, A.; Vargemezis, G.; Voudouris, K.; Soulios, G.; Pliakas, F.; Tsokas, G. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Sci. Total Environ. 2016, 543, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Golshan, M.; Colombani, N.; Mastrocicco, M. Assessing Aquifer Salinization with Multiple Techniques along the Southern Caspian Sea Shore (Iran). Water 2018, 10, 348. [Google Scholar] [CrossRef]
- Kazakis, N.; Spiliotis, M.; Voudouris, K.; Pliakas, F.K.; Papadopoulos, B. A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Sci. Total Environ. 2018, 621, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Motevalli, A.; Reza Moradi, H.; Javadi, S. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J. Hydrol. 2018, 557, 753–773. [Google Scholar] [CrossRef]
- Colombani, N.; Osti, A.; Volta, G.; Mastrocicco, M. Impact of Climate Change on Salinization of Coastal Water Resources. Water Resour. Manag. 2016, 30, 2483–2496. [Google Scholar] [CrossRef]
- Dillon, P. Future management of aquifer recharge. Hydrogeol. J. 2005, 13, 313–316. [Google Scholar] [CrossRef]
- Page, D.; Bekele, E.; Vanderzalm, J.; Sidhu, J. Managed Aquifer Recharge (MAR) in Sustainable Urban Water Management. Water 2018, 10, 239. [Google Scholar] [CrossRef]
- Dillon, P.; Arshad, M. Managed Aquifer Recharge in Integrated Water Resource Management. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Berlin, Germany, 2016; pp. 435–452. [Google Scholar] [Green Version]
- Karnath, K.R. Hydrogeology; Tata McGraw-Hill: New York, NY, USA, 1994; p. 458. [Google Scholar]
- Wood, W.W. Development of technical site selection criteria for artificial recharge, wastewater reuse for groundwater recharge. In Wastewater Reuse for Groundwater Recharge; Asano, T., Roberts, P., Eds.; Office of Water Recycling, State Water Resources Control Board: Sacramento, CA, USA, 1980; pp. 73–91. [Google Scholar]
- Chidley, T.R.E. Assessment of Groundwater Recharge; Clarendon Press: Oxford, UK, 1981; pp. 133–149. [Google Scholar]
- Chopra, R.; Sharma, P.K. Landform analysis and ground water potential in the Bist Doab area Punjab, India. Int. J. Remote Sens. 1993, 14, 17. [Google Scholar] [CrossRef]
- Ramsamy, S.; Anbazhagan, S. Integrated Terrain Analysis in Site Selection for Artificial Recharge in Ayyar Basin, Tamil Nadu, India. Water Resour. J. Bangkok.ST/ESCAP/SER-C 1996, 190, 43–48. [Google Scholar]
- Anbazhagan, S.; Ramasamy, S.M. Geophysical resistivity survey and potential site selection for artificial recharge in central Tamil Nadu, India. Eng. Geol. Environ. 1997, 1, 1169–1173. [Google Scholar]
- Saraf, A.K.; Choudhury, P.R. Integrated remote sensing and GIS for ground water exploration and identification of artificial recharge sites. Int. J. Remote Sens. 1998, 19, 2595–2616. [Google Scholar] [CrossRef]
- Ghayoumian, J.; Ghermezcheshmeh, B.; Feiznia, S.; Noroozi, A.A. Integrating GIS and DSS for identification of suitable areas for artificial recharge, case study Meimeh Basin, Isfahan. Iran. Environ. Geol. 2005, 47, 493–500. [Google Scholar] [CrossRef]
- Ghayoumian, J.; Mohseni Saravi, M.; Feiznia, S.; Nouri, B.; Malekian, A. Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. J. Asian Earth Sci. 2007, 30, 364–374. [Google Scholar] [CrossRef]
- Jasrotia, A.S.; Kumar, R.; Saraf, A.K. Delineation of groundwater recharge sites using integrated remote sensing and GIS in Jammu district, India. Int. J. Remote Sens. 2007, 28, 5019–5036. [Google Scholar] [CrossRef]
- Taheri, A. Site selection for artificial recharging of groundwater by application of geoelectrical method—A case study. Bull. Geol. Soc. Malays. 2008, 54, 63–69. [Google Scholar]
- Chowdhury, A.; Jha, M.K.; Chowdary, V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 2010, 59, 1209–1222. [Google Scholar] [CrossRef]
- Chenini, I.; Ben Mammou, A.; El May, M. Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin). Water Resour. Manag. 2010, 24, 921–939. [Google Scholar] [CrossRef]
- Al Saud, M. Mapping potential areas for groundwater storage in Wadi Aurnah Basin, western Arabian Peninsula, using remote sensing and geographic information system techniques. Hydrogeol. J. 2010, 18, 1481–1495. [Google Scholar] [CrossRef]
- Malekmohammadi, B.; Mehrian, M.R.; Jafari, H.R. Site selection for managed aquifer recharge using fuzzy rules: Integrating geographical information system (GIS) tools and multi-criteria decision making. Hydrogeol. J. 2012, 20, 1393–1405. [Google Scholar] [CrossRef]
- Nasiri, H.; Darvishi Boloorani, A.; Faraji Sabokbar, H.A.; Jafari, H.R.; Hamzeh, M.; Rafi, Y. Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran). Environ. Monit. Assess. 2013, 185, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Hammouri, N.; Al-Amoush, H.; Al-Raggad, M.; Harahsheh, S. Groundwater recharge zones mapping using GIS: A case study in southern part of Jordan Valley, Jordan. Arab. J. Geosci. 2014, 7, 2815–2829. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Alazba, A.A.; Amin, M.T. Identification of Potential Sites for Groundwater Recharge Using a GIS-Based Decision Support System in Jazan Region-Saudi Arabia. Water Resour. Manag. 2014, 28, 3319–3340. [Google Scholar] [CrossRef]
- Rahimi, S.; Roodposhti, M.S.; Abbaspour, R.A. Using combined AHP–genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environ. Earth Sci. 2014, 72, 1979–1992. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Nazzal, Y.; Ahmed, I.; Naeem, M.; Jafri, M.K. Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic. J. Afr. Earth Sci. 2015, 111, 156–169. [Google Scholar] [CrossRef]
- Brown, C.J.; Ward, J.; Mirecki, J. A Revised Brackish Water Aquifer Storage and Recovery (ASR) Site Selection Index for Water Resources Management. Water Resour. Manag. 2016, 30, 2465–2481. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Dissanayake, D.M.D.O.K.; Mayadunna, B.B.; Weerasekera, W.L. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci. Front. 2016, 7, 115–124. [Google Scholar] [CrossRef]
- Valverde, J.P.B.; Blank, C.; Roidt, M.; Schneider, L.; Stefan, C. Application of a GIS Multi-Criteria Decision Analysis for the Identification of Intrinsic Suitable Sites in Costa Rica for the Application of Managed Aquifer Recharge (MAR) through Spreading Methods. Water 2016, 8, 391. [Google Scholar] [CrossRef]
- Quiroz Londoño, O.M.; Romanelli, A.; Lima, M.L.; Massone, H.E.; Martínez, D.E. Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds. J. Environ. Manag. 2016, 176, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinel, A.; Schelkes, K.; Subah, A.; Himmelsbach, T. Spatial multi-criteria analysis for selecting potential sites for aquifer recharge via harvesting and infiltration of surface runoff in north Jordan. Hydrogeol. J. 2016, 24, 1753–1774. [Google Scholar] [CrossRef]
- Fournier, E.D.; Keller, A.A.; Geyer, R.; Frew, J. Investigating the Energy-Water Usage Efficiency of the Reuse of Treated Municipal Wastewater for Artificial Groundwater Recharge. Environ. Sci. Technol. 2016, 50, 2044–2053. [Google Scholar] [CrossRef] [PubMed]
- Farhadian, M.; Bozorg-Haddad, O.; Pazoki, M.; Loáiciga, H.A. Locating and Prioritizing Suitable Places for the Implementation of Artificial Groundwater Recharge Plans. J. Irrig. Drain. Eng. 2017, 143, 8. [Google Scholar] [CrossRef]
- Ahani Amineh, Z.B.; Al-Din Hashemian, S.J.; Magholi, A. Integrating Spatial Multi Criteria Decision Making (SMCDM) with Geographic Information Systems (GIS) for delineation of the most suitable areas for aquifer storage and recovery (ASR). J. Hydrol. 2017, 551, 577–595. [Google Scholar] [CrossRef]
- Selvarani, A.G.; Maheswaran, G.; Elangovan, K. Identification of artificial recharge sites for Noyyal River Basin using GIS and remote sensing. J. Indian Soc. Remote Sens. 2017, 45, 1–11. [Google Scholar] [CrossRef]
- Ghasemi, A.; Saghafian, B.; Golian, S. Optimal location of artificial recharge of treated wastewater using fuzzy logic approach. J. Water Supply Res. Technol. AQUA 2017, 66, 141–156. [Google Scholar] [CrossRef]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. J. Clean. Prod. 2017, 142 Pt 4, 1436–1456. [Google Scholar] [CrossRef]
- Christy, R.M.; Lakshmanan, E. Percolation pond as a method of managed aquifer recharge in a coastal saline aquifer: A case study on the criteria for site selection and its impacts. J. Earth Syst. Sci. 2017, 126, 66. [Google Scholar] [CrossRef]
- Kazakis, N.; Vargemezis, G.; Voudouris, K. Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods. Sci. Total Environ. 2016, 550, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990a, 48, 9–26. [Google Scholar]
- Saaty, T.L. An exposition of the ahp in reply to the paper remarks on the analytic hierarchy process. Manag. Sci. 1990b, 36, 259–268. [Google Scholar] [CrossRef]
- Napolitano, P.; Fabbri, A.G. Single Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS. In HydrolGis Application of Geographic Information Systems in Hydrology and Water Resources Management; Kovar, K., Nachtnebel, H.P., Eds.; IAHS Publication: Wallingford, UK, 1996; pp. 559–566. [Google Scholar]
- Demek, J. Manual of Detailed Geomorphological Mapping; Academia: Praha, Czech Republic, 1972. [Google Scholar]
- Kazakis, N.; Oikonomidis, D.; Voudouris, K. Groundwater vulnerability and pollution risk assessment with disparate models in karstic, porous and fissured rock aquifers using remote sensing techniques and GIS in Anthemountas basin, Greece. Environ. Earth Sci. 2015, 74, 6199–6209. [Google Scholar] [CrossRef]
- Gale, I.N.; Macdonald, D.M.J.; Calow, R.C.; Neumann, I.; Moench, M.; Kulkarni, H.; Mudrakartha, S.; Palanisami, K. Managed Aquifer Recharge: An Assessment of its Role and Effectiveness in Watershed Management; Final Report for DFID KAR project R8169, Augmenting Groundwater Resources by Artificial Recharge—AGRAR; British Geological Survey: Keyworth, UK.
- Niswonger, R.G.; Morway, E.D.; Triana, E.; Huntington, J.L. Managed aquifer recharge through off-season irrigation in agricultural regions. Water Resour. Res. 2017, 53, 6970–6992. [Google Scholar] [CrossRef]
- Anandan, K.S.; Sahay, S.N.; Karthikeyan, S. Delineation of recharge area and artificial recharge studies in the Neyveli hydrogeological basin. Mine Water Environ. 2010, 29, 14–22. [Google Scholar] [CrossRef]
- Pliakas, F.; Petalas, C.; Diamantis, I.; Kallioras, A. Modeling of groundwater artificial recharge by reactivating an old stream bed. Water Resour. Manag. 2005, 19, 279–294. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Sbarbati, C.; Colombani, N.; Petitta, M. Efficiency verification of a horizontal flow barrier via flowmeter tests and multilevel sampling. Hydrol. Process 2013, 27, 2414–2421. [Google Scholar] [CrossRef]
- Caschetto, M.; Colombani, N.; Mastrocicco, M.; Petitta, M.; Aravena, R. Estimating groundwater residence time and recharge patterns in a saline coastal aquifer. Hydrol. Process 2016, 30, 4202–4213. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N.; Palpacelli, S.; Castaldelli, G. Large tank experiment on nitrate fate and transport: The role of permeability distribution. Environ. Earth Sci. 2011, 63, 903–914. [Google Scholar] [CrossRef]
- Bournaris, Th.; Papathanasiou, J.; Manos, B.; Kazakis, N.; Voudouris, K. Support of irrigation water use and eco-friendly decision process in agricultural production planning (Operational Research). Oper. Res. Int. J. 2015, 15, 289–306. [Google Scholar] [CrossRef]
- Patrikaki, O.; Kazakis, N.; Voudouris, K. Vulnerability map: A useful tool for groundwater protection: An example from Mouriki basin, North Greece. Fresenius Environ. Bull. 2012, 21, 2516–2521. [Google Scholar]
- Voudouris, K. Artificial Recharge via Boreholes Using Treated Wastewater: Possibilities and Prospects. Water 2011, 3, 964–975. [Google Scholar] [CrossRef] [Green Version]
- Bekele, E.; Page, D.; Vanderzalm, J.; Kaksonen, A.; Gonzalez, D. Water Recycling via Aquifers for Sustainable Urban Water Quality Management: Current Status, Challenges and Opportunities. Water 2018, 10, 457. [Google Scholar] [CrossRef]
- Ferguson, G.; Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Chang. 2012, 2, 342–345. [Google Scholar] [CrossRef]
A/A | Authors | Parameters Applied | Methods—Tools | Method of MAR | Aquifer Type | Country |
---|---|---|---|---|---|---|
1 | Chopra and Sharma [12] | Geomorphological units (e.g., ridge, structural hills, alluvial fans, sand dunes, flood plains, river channels, seasonal rivulets) | Remote sensing | Tapping flood plains | Porous aquifer (inland) | India |
2 | Ramsamy and Anbazhagan [13] | Drainage density, Aquifer material, Groundwater level, Geology | Priority areas, Remote sensing | Percolation ponds, Pitting, Small dams, Induced recharge, Desiltation of existing tanks | Fissured rock aquifer (mountainous) | India |
3 | Anbazhagan and Ramsamy [14] | Water level, Electrical resistivity, Thickness of the vadose zone | Geophysical methods | Wells | Fissured rock aquifer (mountainous) | India |
4 | Saraf and Choudhury [15] | Slope, Geology, Geomorphology, Lineaments | Remote sensing, GIS | Recharge basins or reservoirs | Fissured rock aquifer (mountainous) | India |
5 | Ghayoumian et al. [16] | Slope, Infiltration rate, Sediment thickness, Transmissivity, Water quality | Decision support system, GIS | Flood spreading | Porous aquifer (inland) | Iran |
6 | Ghayoumian et al. [17] | Slope, Infiltration rate, Depth to groundwater, Quality of alluvial sediments, Land use | Boolean, Fuzzy logic, Remote sensing, GIS | Not specified | All types (coastal) | Iran |
7 | Jasrotia et al. [18] | Lithology, Geomorphology, Land use/land cover, Drainage, Hydrologic soil texture, Depth to water table, Transmissivity, Permeability, Storativity, Specific capacity, Infiltration | Boolean logic, Conditional methods, GIS | Not specified | Porous aquifer (inland) | India |
8 | Taheri [19] | Electrical resistivity | Geophysical methods | Not specified | Porous aquifer (inland) | Iran |
9 | Chenini et al. [20] | Watershed limit, Drainage, Drainage density, Lithology, Fractured outcrops, Lineament, Permeability, Piezometry | Multi-criteria analysis, GIS | Not specified | All types (inland) | Tunisia |
10 | Saud [21] | Precipitation, Lithology, Rock fractures, Slope, Drainage, Land cover/use | Remote sensing, GIS | Not specified | All types (inland) | Saudi Arabia |
11 | Chowdhury et al. [22] | Geomorphology, Geology, Drainage density, Slope, Aquifer transmissivity | Remote sensing, Analytic Hierarchy Process, GIS | Not specified | Fissured rock, Porous aquifer (inland) | India |
12 | Malekmohammadi et al. [23] | Slope, Geology, Groundwater depth, Potential for runoff, Land use, Groundwater electrical conductivity | Fuzzy logic, GIS | Not specified | Karst aquifer, Porous aquifer (inland) | Iran |
13 | Nasiri et al. [24] | Slope, Water quality, Geology, Alluvium thickness, Land use, Transmissivity, Geomorphology, Drainage density | PROMETHEE II, Analytic Hierarchy Process, GIS | Flood spreading | Porous aquifer (inland) | Iran |
14 | Hammouri et al. [25] | Slope, Land use, Geomorphology, Geology, Well density, Water quality, Depth to groundwater, Runoff available | GIS, SLUGGER-DQL score model | Not specified | All types (inland) | Jordan |
15 | Mahmoud et al. [26] | Rainfall surplus, Slope, Potential runoff coefficient, Land cover/use, Soil texture | GIS, DSS, Analytic Hierarchy Process | Not specified | Not specified | Saudi Arabia |
16 | Rahimi et al. [27] | Slope, Alluvium thickness, Geology, Morphology, Electrical conductivity, Land use, Drainage density, Aquifer transmissivity, Elevation | GIS, Genetic algorithm, Analytic Hierarchy Process | Flood spreading | Porous (inland) | Iran |
17 | Zaidi et al. [28] | Slope, Soil texture, Vadose zone thickness, Groundwater quality (TDS), Type of formation, Land use | Boolean Logic, GIS | Not specified | All types (inland) | Saudi Arabia |
18 | Brown et al. [29] | Density ratio, Effective porosity, Aquifer gradient, Injection time, Storage duration, Dispersivity, Aquifer thickness, Hydraulic conductivity, Water quality | Index, Statistical analysis | Well injection (brackish water) | Karst aquifer (coastal) | USA |
19 | Senanayake et al. [30] | Rainfall, Lineament, Slope, Drainage, Land use/land cover, Geology, Geomorphology, Soil characteristics | GIS | Not specified | All types (inland) | Sri Lanka |
20 | Bonilla Valverde et al. [31] | Hydrogeological aptitude, Terrain slope, Top soil texture, Drainage network density | GIS, Boolean logic, Sensitivity analysis | Not specified | All types | Costa Rica |
21 | Quiroz Londoño et al. [32] | Drainage density, Geomorphologic units, Soil media, Land cover, Slope and aspect | Remote sensing, Fuzzy logic, GIS | Not specified | Fissured rock, Porous aquifer (inland) | Argentina |
22 | Steinel et al. [33] | Distance to international borders, Distance to wadis, Catchment size, Rainfall, Land cover, Slope, Existing dams, Thickness of aquifer, Depth to water table, Flow gradient, Distance to faults, Groundwater salinity, Groundwater contamination, Distance to roads, Distance to active government wells | Boolean logic | Infiltration of capturedsurface runoff | All types (inland) | Jordan |
23 | Fournier et al. [34] | Hydraulic conductivity, Existing land use, Composite suitability, Binary mask, Reference source with selected destination | GIS, Weighted overlay analysis model | Surface spreading basin | Porous aquifer (inland) | USA |
24 | Farhadian et al. [35] | Precipitation, Vegetation, Distance from connected roads, Soil, Distance from rivers, Geology, Slope, Land use | GIS, Analytic Hierarchy Process, Nash conflict resolution method | Not specified | All types (inland) | Iran |
25 | Ahani Amineh et al. [36] | Source and groundwater compatibility, Source water quality, Storage availability, Groundwater quality (EC), Construction cost, Source water availability, Aquifer characteristics, Demand, Operating cost | GIS, Analytic Hierarchy Process | Surface spreading | Porous aquifer (inland) | Iran |
26 | Selvarani et al. [37] | Geology, Geomorphology, Slope, Drainage density, Lineament density | Remote sensing, GIS, Analytic Hierarchy Process | Not specified | Fissured rock, Porous aquifer (inland) | India |
27 | Ghasemi et al. [38] | Hydraulic gradient, Transmissibility, Aquifer thickness, Land use, Minimum area, Distance of supply sites, Distance from highways and freeways, Distance from residential areas, Distance from rivers, Distance from wastewater, Elevation difference | GIS, Fuzzy logic | Not specified | Porous aquifer (inland) | Iran |
28 | Singh et al. [39] | Slope, Soil, Land use, Drainage order | GIS, Analytic Hierarchy Process | Not specified | Porous aquifer (inland) | India |
29 | Christy and Lakshmanan et al. [40] | Electrical resistivity | Geophysical methods | Percolation ponds | Coastal porous aquifers | India |
A/A | Parameter | Factor Variable | Rating | |
---|---|---|---|---|
Class | Range | |||
Morphological | ||||
1 | Slope (%) | Very High High Moderate Low Very low Extremely low | 0–2 2–5 5–10 10–15 15–35 >35 | 10 8 6 4 2 0 |
2 | Shore (distance—m) | Very High High Moderate Low Very low Extremely low | >1000 750–1000 500–750 300–500 100–300 <100 | 10 8 6 4 2 0 |
3 | Drainage network (distance—m) | Very High High Moderate Low Very low Extremely low | <100 100–300 300–500 500–750 750–1000 >1000 | 10 8 6 4 2 0 |
Hydrogeological | ||||
4 | Depth of groundwater (m) | Very High High Moderate Low Very low Extremely low | >10 10–8 8–6 6–2 2–0 Artesian | 10 8 6 4 2 0 |
5 | Piezometric head (m) | Very High High Moderate Low Very low Extremely low | ≤ 10 −10–0 0–6 6–10 10–20 >20 | 10 8 6 4 2 0 |
6 | Vadose zone (log of hydraulic resistance) | Very High High Moderate Low Very low Extremely low | <1 1–2 2–3 3–4 4–5 >5 | 10 8 6 4 2 0 |
7 | Groundwater quality (electric conductivity—μS/cm) | Very High High Moderate Low Very low Extremely low | <500 500–750 750–1000 1000–1500 1500–2000 >2000 | 10 8 6 4 2 0 |
8 | Transmissivity (m2/day) | Very High High Moderate Low Very low Extremely low | >100 70–100 30–70 10–30 5–10 <5 | 10 8 6 4 2 0 |
Infrastructures | ||||
9 | Water availability (distance from dams, village/city, waste water treatment facilities—m) | Very High High Moderate Low Very low Extremely low | <500 500–1000 1000–1500 1500–2000 2000–3000 >3000 | 10 8 6 4 2 0 |
10 | Main roads (distance—m) | Very High High Moderate Low Very low Extremely low | >1000 750–1000 500–750 300–500 100–300 <100 | 10 8 6 4 2 0 |
Parameter | Topographic Slope | Distance from the Shore | Drainage Network | Groundwater Depth | Piezometric Head | Vadose Zone | Groundwater Quality | Transmissivity | Water Availability | Main Roads | Weights (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Topographic slope | 1 | 2 | 6 | 4 | 2 | 1 | 2 | 6 | 4 | 8 | 22 |
Distance from the shore | 0.5 | 1 | 4 | 2 | 1 | 0.5 | 1 | 4 | 2 | 6 | 12 |
Drainage network | 0.17 | 0.25 | 1 | 0.5 | 0.25 | 0.17 | 0.25 | 1 | 0.5 | 2 | 3 |
Groundwater depth | 0.25 | 0.5 | 2 | 1 | 0.5 | 0.25 | 0.5 | 2 | 1 | 4 | 6 |
Piezometric head | 0.5 | 1 | 4 | 2 | 1 | 0.5 | 1 | 4 | 2 | 6 | 12 |
Vadose zone | 1 | 2 | 6 | 4 | 2 | 1 | 2 | 6 | 4 | 8 | 22 |
Groundwater quality | 0.5 | 1 | 4 | 2 | 1 | 0.5 | 1 | 4 | 2 | 6 | 12 |
Transmissivity | 0.17 | 0.25 | 1 | 0.5 | 0.25 | 0.17 | 0.25 | 1 | 0.5 | 2 | 3 |
Water availability | 0.25 | 0.5 | 2 | 1 | 0.5 | 0.25 | 0.5 | 2 | 1 | 4 | 6 |
Main roads | 0.12 | 0.17 | 0.5 | 0.25 | 0.17 | 0.12 | 0.17 | 0.5 | 0.25 | 1 | 2 |
Parameter | Effective Weighting (%) | |||
---|---|---|---|---|
Min. | Max. | Standard Deviation | Average/Final Weight | |
Topographic slope | 0 | 43.7 | 7.9 | 24 |
Distance from the shore | 0 | 39.7 | 5.6 | 20 |
Drainage network | 0 | 9.1 | 1.7 | 4 |
Groundwater depth | 1.8 | 19.9 | 2.8 | 10 |
Piezometric head | 0 | 28.4 | 7.4 | 7 |
Vadose zone | 0 | 36.7 | 6.6 | 9 |
Groundwater quality | 0 | 25.5 | 3.2 | 12 |
Transmissivity | 0 | 7.2 | 1.1 | 4 |
Water availability | 0 | 18.5 | 3.5 | 7 |
Main roads | 0 | 9.9 | 2.1 | 3 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazakis, N. Delineation of Suitable Zones for the Application of Managed Aquifer Recharge (MAR) in Coastal Aquifers Using Quantitative Parameters and the Analytical Hierarchy Process. Water 2018, 10, 804. https://doi.org/10.3390/w10060804
Kazakis N. Delineation of Suitable Zones for the Application of Managed Aquifer Recharge (MAR) in Coastal Aquifers Using Quantitative Parameters and the Analytical Hierarchy Process. Water. 2018; 10(6):804. https://doi.org/10.3390/w10060804
Chicago/Turabian StyleKazakis, Nerantzis. 2018. "Delineation of Suitable Zones for the Application of Managed Aquifer Recharge (MAR) in Coastal Aquifers Using Quantitative Parameters and the Analytical Hierarchy Process" Water 10, no. 6: 804. https://doi.org/10.3390/w10060804
APA StyleKazakis, N. (2018). Delineation of Suitable Zones for the Application of Managed Aquifer Recharge (MAR) in Coastal Aquifers Using Quantitative Parameters and the Analytical Hierarchy Process. Water, 10(6), 804. https://doi.org/10.3390/w10060804