Pluvial Flood Risk Assessment Tool (PFRA) for Rainwater Management and Adaptation to Climate Change in Newly Urbanised Areas
Abstract
:1. Introduction
2. The Aim and Scope
3. Research and Modelling Framework
3.1. PFRA Model Scheme
3.2. Spatial Data Input
3.3. Precipitation Forecast
3.4. Surface Runoff Estimation
3.5. Sink Evaluation Module
3.6. Hazard Assessment Module
3.7. Vulnerability Assessment Module
3.8. Risk Score Module
- 0 ≤ Risk Score < 20—very low risk score
- 20 ≤ Risk Score < 40—low risk score
- 40 ≤ Risk Score < 60—medium risk score
- 60 ≤ Risk Score < 80—high risk score
- 80 ≤ Risk Score ≤ 100—very high risk score
4. Study Site
5. Results of the Simulation
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ANNs | Artificial Neural Networks |
BMPs | Best management practices |
CityCAT | City Catchment Analysis Tool |
DEM | Digital Elevation Model |
GFS | Global Forecast System |
GIS | Geographic Information Systems |
GRIB | General Regularly-distributed Information in Binary form |
LID | Low impact development |
LiDAR | Light Detection and Ranging |
PCSWMM | Personal Computer Storm Water Management Model |
PFRA | Pluvial Flood Risk Assessment |
RAPIDS | Radar Pluvial flooding Identification for Drainage System |
RFDF | Residential Flood Damage Functions |
RISA | Rain InfraStructure Adaptation |
RRA | Regional Risk Assessment |
SCS | Soil Conservation Service |
STEPS | Short-Term Ensemble Prediction System |
SWMW | Storm Water Management Model |
References
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Couch, C.; Petschel-Held, G.; Leontidou, L. Urban Sprawl in Europe: Landscape, Land-Use Change and Policy; Wiley-Blackwell: Hoboken, NJ, USA, 2008. [Google Scholar]
- Triantakonstantis, D.; Stathakis, D. Examining urban sprawl in Europe using spatial metrics. Geocarto Int. 2015, 30, 1092–1112. [Google Scholar] [CrossRef]
- Altieri, L.; Cocchi, D.; Pezzi, G.; Scott, E.M.; Ventrucci, M. Urban sprawl scatterplots for urban morphological zones data. Ecol. Indic. 2014, 36, 315–323. [Google Scholar] [CrossRef]
- Haase, D.; Kabisch, N.; Haase, A. Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [PubMed]
- Apel, H.; Trepat, O.M.; Hung, N.N.; Chinh, D.T.; Merz, B.; Dung, N.V. Combined fluvial and pluvial urban flood hazard analysis: Concept development and application to Can Tho city, Mekong delta, Vietnam. Nat. Hazards Earth Syst. Sci. 2016, 16, 941–961. [Google Scholar] [CrossRef]
- Chen, Y.; Samuelson, H.W.; Tong, Z. Integrated design workflow and a new tool for urban rainwater management. J. Environ. Manag. 2016, 180, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Willems, P.; Arnbjerg-Nielsen, K.; Olsson, J.; Nguyen, V.T.V. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmos. Res. 2012, 103, 106–118. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A.; Ripa, M.N.; Leone, A. Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban watershed of the metropolitan area of Rome (Italy). J. Environ. Manag. 2017, 201, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.-P.; Li, Z.-X.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperotto, A.; Torresan, S.; Gallina, V.; Coppola, E.; Critto, A.; Marcomini, A. A multi-disciplinary approach to evaluate pluvial floods risk under changing climate: The case study of the municipality of Venice (Italy). Sci. Total Environ. 2016, 562, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.N.; Qu, L.; Zou, T. Quantitative analysis of urban pluvial flood alleviation by open surface water systems in new towns: Comparing Almere and Tianjin eco-city. Sustainability 2015, 7, 13378–13398. [Google Scholar] [CrossRef]
- Olsen, A.S.; Zhou, Q.; Linde, J.J.; Arnbjerg-Nielsen, K. Comparing methods of calculating expected annual damage in urban pluvial flood risk assessments. Water 2015, 7, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Blanc, J.; Hall, J.; Roche, N.; Dawson, R.; Cesses, Y.; Burton, A.; Kilsby, C. Enhanced efficiency of pluvial flood risk estimation in urban areas using spatial–temporal rainfall simulations. J. Flood Risk Manag. 2012, 5, 143–152. [Google Scholar] [CrossRef]
- Guerreiro, S.; Glenis, V.; Dawson, R.; Kilsby, C. Pluvial flooding in European cities—A continental approach to urban flood modelling. Water 2017, 9, 296. [Google Scholar] [CrossRef]
- Serre, D.; Barroca, B.; Diab, Y. Urban flood mitigation: Sustainable options. In Sustainable City VI: Urban Regeneration and Sustainability; Brebbia, C.A., Hernandez, S., Tiezzi, E., Eds.; WIT Press: Southampton, UK, 2010; Volume 129, pp. 299–309. [Google Scholar]
- Visser, F. Rapid mapping of urban development from historic ordnance survey maps: An application for pluvial flood risk in Worcester. J. Maps 2014, 10, 276–288. [Google Scholar] [CrossRef]
- Cobby, D.; Falconer, R.; Forbes, G.; Smyth, P.; Widgery, N.; Astle, G.; Dent, J.; Golding, B. Potential warning services for groundwater and pluvial flooding. In Flood Risk Management: Research and Practice; Samuels, P., Huntington, S., Allsop, W., Harrop, J., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2008; pp. 1273–1280. [Google Scholar]
- Simões, N.E.; Ochoa-Rodríguez, S.; Wang, L.P.; Pina, R.D.; Marques, A.S.; Onof, C.; Leitão, J.P. Stochastic urban pluvial flood hazard maps based upon a spatial-temporal rainfall generator. Water 2015, 7, 3396–3406. [Google Scholar] [CrossRef] [Green Version]
- Rozer, V.; Muller, M.; Bubeck, P.; Kienzler, S.; Thieken, A.; Pech, I.; Schroter, K.; Buchholz, O.; Kreibich, H. Coping with pluvial floods by private households. Water 2016, 8, 304. [Google Scholar] [CrossRef]
- Bhattarai, R.; Yoshimura, K.; Seto, S.; Nakamura, S.; Oki, T. Statistical model for economic damage from pluvial floods in Japan using rainfall data and socioeconomic parameters. Nat. Hazards Earth Syst. Sci. 2016, 16, 1063–1077. [Google Scholar] [CrossRef]
- Van Ootegem, L.; Verhofstadt, E.; Van Herck, K.; Creten, T. Multivariate pluvial flood damage models. Environ. Impact Assess. Rev. 2015, 54, 91–100. [Google Scholar] [CrossRef]
- Grahn, T.; Nyberg, L. Assessment of pluvial flood exposure and vulnerability of residential areas. Int. J. Disaster Risk Reduct. 2017, 21, 367–375. [Google Scholar] [CrossRef]
- Melo, N.; Santos, B.F.; Leandro, J. A prototype tool for dynamic pluvial-flood emergency planning. Urban Water J. 2015, 12, 79–88. [Google Scholar] [CrossRef]
- Sun, S.A.; Djordjević, S.; Khu, S.-T. A general framework for flood risk-based storm sewer network design. Urban Water J. 2011, 8, 13–27. [Google Scholar] [CrossRef]
- Ahiablame, L.; Shakya, R. Modeling flood reduction effects of low impact development at a watershed scale. J. Environ. Manag. 2016, 171, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Lejcus, K.; Dabrowska, J.; Garlikowski, D.; Spitalniak, M. The application of water-absorbing geocomposites to support plant growth on slopes. Geosynth. Int. 2015, 22, 452–456. [Google Scholar] [CrossRef]
- Ellis, J.B.; Revitt, D.M.; Lundy, L. An impact assessment methodology for urban surface runoff quality following best practice treatment. Sci. Total Environ. 2012, 416, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Susnik, J.; Strehl, C.; Postmes, L.A.; Vamvakeridou-Lyroudia, L.S.; Savic, D.A.; Kapelan, Z.; Malzer, H.J. Assessment of the effectiveness of a risk-reduction measure on pluvial flooding and economic loss in Eindhoven, the Netherlands. In Proceedings of the 12th International Conference on Computing and Control for the Water Industry (CCWI2013), Perugia, Italy, 2–4 September 2013; Brunone, B., Giustolisi, O., Ferrante, M., Laucelli, D., Meniconi, S., Berardi, L., Campisano, A., Eds.; Procedia Engineering, Elsevier: Amsterdam, The Netherlands, 2014; Volume 70, pp. 1619–1628. [Google Scholar]
- Scheid, C.; Schmitt, T.; Bischoff, G.; Hüffmeyer, N.; Krieger, K.; Waldhoff, A.; Günner, C. Gis-based methodology for pluvial flood risk analysis in Hamburg. In Proceedings of the International Conference Novatech, Lyon, France, 23–27 June 2013; pp. 23–27. [Google Scholar]
- Astrom, H.; Hansen, P.F.; Garre, L.; Arnbjerg-Nielsen, K. An influence diagram for urban flood risk assessment through pluvial flood hazards under non-stationary conditions. J. Water Clim. Chang. 2014, 5, 276–286. [Google Scholar] [CrossRef]
- Fritsch, K.; Assmann, A.; Tyrna, B. Long-term experiences with pluvial flood risk management. In Proceedings of the 3rd European Conference on Flood Risk Management, Lyon, France, 17–21 October 2016; Lang, M., Klijn, F., Samuels, P., Eds.; EDP Sciences—Web of Conferences: Les Ulis, France, 2016; Volume 7. [Google Scholar]
- Wang, T.; Han, Q.; de Vries, B. A semi-automatic neighborhood rule discovery approach. Appl. Geogr. 2017, 88, 73–83. [Google Scholar] [CrossRef]
- Hełdak, M.; Szczepański, J.; Płuciennik, M.; Stacherzak, A. Planning decisions in landslide areas. J. Ecol. Eng. 2016, 17, 218–227. [Google Scholar] [CrossRef]
- Wan, S. A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Eng. Geol. 2009, 108, 237–251. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Tung, C.-P.; Li, Y.-H. Low impact development planning and adaptation decision-making under climate change for a community against pluvial flooding. Water 2017, 9, 756. [Google Scholar] [CrossRef]
- Nowakowska, M.; Kazmierczak, B.; Kotowski, A.; Wartalska, K. Identification, calibration and validation of hydrodynamic model of urban drainage system in the example of the city of Wroclaw. Ochr. Śr. 2017, 39, 51–60. [Google Scholar]
- Rene, J.R.; Djordjevic, S.; Butler, D.; Madsen, H.; Mark, O. Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability. Urban Water J. 2014, 11, 573–583. [Google Scholar] [CrossRef]
- Gregersen, I.B.; Sorup, H.J.D.; Madsen, H.; Rosbjerg, D.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K. Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Clim. Chang. 2013, 118, 783–797. [Google Scholar] [CrossRef]
- Schellart, A.; Ochoa, S.; Simões, N.; Wang, L.-P.; Rico-Ramirez, M.; Liguori, S.; Duncan, A.; Chen, A.S.; Keedwell, E.; Djordjevic, S. Urban Pluvial Flood Modelling with Real Time Rainfall Information–UK Case Studies. In Proceedings of the 12nd International Conference on Urban Drainage, Porto Alegre, Brazil, 10–15 September 2011. [Google Scholar]
- Wang, L.P.; Simoes, N.; Rico-Ramirez, M.; Ochoa, S.; Leitao, J.; Maksimovic, C. Radar-based pluvial flood forecasting over urban areas: Redbridge case study. In Weather Radar and Hydrology; Moore, R.J., Cole, S.J., Illingworth, A.J., Eds.; IAHS Press: Wallingford, UK, 2012; Volume 351, pp. 632–637. [Google Scholar]
- Bertsch, R.; Glenis, V.; Kilsby, C. Urban flood simulation using synthetic storm drain networks. Water 2017, 9, 925. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Wilby, R. Modelling the impact of land subsidence on urban pluvial flooding: A case study of downtown Shanghai, China. Sci. Total Environ. 2016, 544, 744–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Susnik, J.; Strehl, C.; Postmes, L.A.; Vamvakeridou-Lyroudia, L.S.; Malzer, H.J.; Savic, D.A.; Kapelan, Z. Assessing financial loss due to pluvial flooding and the efficacy of risk-reduction measures in the residential property sector. Water Resour. Manag. 2015, 29, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Tyrna, B.; Assmann, A.; Fritsch, K.; Johann, G. Large-scale high-resolution pluvial flood hazard mapping using the raster-based hydrodynamic two-dimensional model floodareahpc. J. Flood Risk Manag. 2017. [Google Scholar] [CrossRef]
- Krasowski, W. The Possibilities of Using Quantum GIS in Visualization, Geoprocessing and Analyzing Prognostic Meteorological Data; Wrocław University of Science and Technology: Wrocław, Poland, 2011; p. 70. [Google Scholar]
- Heistermann, M.; Jacobi, S.; Pfaff, T. Technical note: An open source library for processing weather radar data wradlib. Hydrol. Earth Syst. Sci. 2013, 17, 863–871. [Google Scholar] [CrossRef]
- Cronshey, R. Urban Hydrology for Small Watersheds; U.S. Department of Agriculture, Soil Conservation Service, Engineering Division: Washington, DC, USA, 1986.
- Zhan, X.; Huang, M.-L. ArcCN-runoff: An ArcGIS tool for generating curve number and runoff maps. Environ. Model. Softw. 2004, 19, 875–879. [Google Scholar] [CrossRef]
- Banach, W. Influence of raster Corine Land Cover map use on average CN value in SCS model. Czasopismo Techniczne Środowisko 2012, R.109, z.1-Ś, 3–11. [Google Scholar]
- Miler, A. Ocena wpływu zmian użytkowania terenu na odpływy wezbraniowe przy użyciu metody scs-cn. Rocznik Ochrona Środowiska 2012, 14, 512–524. [Google Scholar]
- Banasik, K. Computation of Flood Hydrographs for Small Urban Catchments; Wydawnictwo SGGW: Warszawa, Poland, 2009; p. 27. [Google Scholar]
- Stone, K.; Daanen, H.; Jonkhoff, W.; Bosch, P. Quantifying the Sensitivity of our Urban Systems: Impact Functions for Urban Systems; Knowledge for Climate Programme Office: Utrecht, The Netherlands, 2013. [Google Scholar]
- Fine, W.T. Mathematical Evaluations for Controlling Hazards; Naval Ordnance Laboratory: White Oak, MD, USA; National Technical Information Service [Distributor]: Silver Spring, MD, USA; Springfield, VA, USA, 1971. [Google Scholar]
- Cardona, O.D.; Van Aalst, M.K.; Birkmann, J.; Fordham, M.; Mc Gregor, G.; Rosa, P.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T.; Décamps, H.; et al. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. [Google Scholar]
- Escuder-Bueno, I.; Castillo-Rodríguez, J.T.; Zechner, S.; Jöbstl, C.; Perales-Momparler, S.; Petaccia, G. A quantitative flood risk analysis methodology for urban areas with integration of social research data. Nat. Hazards Earth Syst. Sci. 2012, 12, 2843–2863. [Google Scholar] [CrossRef] [Green Version]
- Piepiora, Z.; Kachniarz, M.; Babczuk, A. Financing the counteraction of natural disasters’ effects in Lower Silesian voivodeship. In Proceedings of the 2015 International conference on Management Engineering and Management Innovation, Changsha, China, 10–11 January 2015; Wang, M., Ed.; Atlantis Press: Paris, France, 2015; Volume 3, pp. 215–220. [Google Scholar]
- Ksiazek, S.; Suszczewicz, M. City profile: Wroclaw. Cities 2017, 65, 51–65. [Google Scholar] [CrossRef]
- Przybyła, K.; Kulczyk-Dynowska, A.; Kachniarz, M. Quality of life in the regional capitals of Poland. J. Econ. Issues 2014, 48, 181–196. [Google Scholar] [CrossRef]
- Warczewska, B. Przemiany przestrzenne wybranych wsi leżących w strefie podmiejskiej Wrocławia. In Gospodarka Przestrzenna XI; Korenik, S., Przybyła, Z., Eds.; Wydawnictwo Katedra Gospodarki Przestrzennej i Administracji Samorządowej Wydział Nauk Ekonomicznych Uniwersytet Ekonomiczny we Wrocławiu: Wrocław, Poland, 2008; pp. 327–339. [Google Scholar]
- Gonda-Soroczynska, E. Suburbia Wrocławia a urbanizacja. In Gospodarka Przestrzenna XI; Korenik, S., Przybyła, Z., Eds.; Wydawnictwo Katedra Gospodarki Przestrzennej i Administracji Samorządowej Wydział Nauk Ekonomicznych Uniwersytet Ekonomiczny we Wrocławiu: Wrocław, Poland, 2008; pp. 99–109. [Google Scholar]
- Zathey, M. Wrocławska Strefa Suburbialna. Zmiany Morfologiczne, Funkcjonalne i Społeczne. Ph.D. Thesis, Uniwersytet Wrocławski, Wrocław, Poland, 2005. [Google Scholar]
- Masztalski, R. The phenomenon of the suburbanization of Wroclaw. Int. J. Hous. Sci. Appl. 2002, 26, 133–140. [Google Scholar]
- Forys, I.; Putek-Szelag, E. Methods of linear ordering in estimation of potential of polish market of agricultural property. Actual Probl. Econ. 2014, 151, 542–550. [Google Scholar]
- Woch, F.; Hernik, J.; Linke, H.; Sankowski, E.; Bęczkowska, M.; Noszczyk, T. Renewable energy and rural autonomy: A case study with generalizations. Pol. J. Environ. Stud. 2017, 26, 2823–2832. [Google Scholar] [CrossRef]
- Furmankiewicz, M.; Macken-Walsh, Á. Government within governance? Polish rural development partnerships through the lens of functional representation. J. Rural Stud. 2016, 46, 12–22. [Google Scholar] [CrossRef]
- Furmankiewicz, M.; Thompson, N.; Zielińska, M. Area-based partnerships in rural Poland: The post-accession experience. J. Rural Stud. 2010, 26, 52–62. [Google Scholar] [CrossRef]
- Hełdak, M.; Płuciennik, M. Costs of urbanisation in Poland, based on the example of Wroclaw. In IOP Conference Series: Materials Science and Engineering; WMCAUS: Prague, Czech Republic, 2017; Volume 245, p. 072003. [Google Scholar]
- Litynski, P.; Holuj, A. Urban sprawl costs: The valuation of households’ losses in Poland. J. Settl. Spat. Plan. 2017, 8, 11–35. [Google Scholar] [CrossRef]
- Kajdanek, K. Newcomers vs. Old-timers? Community, cooperation and conflict in the post-socialist suburbs of Wroclaw, Poland. In Mobilities and Neighbourhood Belonging in Cities and Suburbs; Watt, P., Smets, P., Eds.; Palgrave Macmillan: London, UK, 2014; pp. 182–199. [Google Scholar]
- Szewrański, S.; Kazak, J.; Żmuda, R.; Wawer, R. Indicator-based assessment for soil resource management in the Wroclaw larger urban zone of Poland. Polish J. Environ. Stud. 2017, 26, 2239–2248. [Google Scholar] [CrossRef]
- Hełdak, M.; Raszka, B.; Szczepanski, J. Design of ground surface sealing in the spatial policy of communes. In Proceedings of the World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium 2016 (WMCAUS 2016), Prague, Czech Republic, 13–17 June 2016; Drusa, M., Yilmaz, I., Marschalko, M., Coisson, E., Segalini, A., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2016; Volume 161, pp. 1367–1372. [Google Scholar]
- Kazak, J.; Szewrański, S. Indicator-Based Environmental Assessment of Spatial Planning with the Use of Community Viz; Vsb-Technical University of Ostrava: Ostrava, Czech Republic, 2013; pp. 163–173. [Google Scholar]
- Paweska, K.; Bawiec, A.; Pulikowski, K. Wastewater treatment in submerged aerated biofilter under condition of high ammonium concentration. Ecol. Chem. Eng. S 2017, 24, 431–442. [Google Scholar] [CrossRef]
- Żyromski, A.; Biniak-Pieróg, M.; Burszta-Adamiak, E.; Zamiar, Z. Evaluation of relationship between air pollutant concentration and meteorological elements in winter months. J. Water Land Dev. 2014, 22, 25–32. [Google Scholar] [CrossRef]
- Kazak, J.; van Hoof, J.; Szewranski, S. Challenges in the wind turbines location process in Central Europe—the use of spatial decision support systems. Renew. Sustain. Energy Rev. 2017, 76, 425–433. [Google Scholar] [CrossRef]
- Świąder, M.; Tokarczyk-Dorociak, K.; Szewrański, S.; Kazak, J. Analiza zapisów regionalnych programów operacyjnych w latach 2014–2020 w kontekście finansowania inwestycji z zakresu OZE. Rynek Energii 2016, Nr 3, 72–80. [Google Scholar]
- Tokarczyk-Dorociak, K.; Kazak, J.; Szewrański, S. Delimitacja jednostek krajobrazowych w celu wstępnej identyfikacji krajobrazów strefy podmiejskiej Wrocławia. Infrastruktura i Ekologia Terenów Wiejskich 2017, Nr I/2, 371–384. [Google Scholar]
- Solecka, I.; Sylla, M.; Świąder, M. Urban sprawl impact on farmland conversion in suburban area of Wrocław, Poland. In IOP Conference Series: Materials Science and Engineering; WMCAUS: Prague, Czech Republic, 2017; Volume 245, p. 072002. [Google Scholar]
- Raszka, B.; Kalbarczyk, E. Methodological assumptions made in research into the benefits of ecosystem services in protected areas in the suburbs of Wroclaw, Poland. In Proceedings of the 2013 International Conference on Advances in Social Science, Humanities, and Management, Guangzhou, China, 14–15 December 2013; Kim, Y., Ed.; Atlantis Press: Paris, France, 2013; Volume 43, pp. 1–6. [Google Scholar]
- Sylla, M. Mapping and assessment of the potential to supply selected ecosystem services at a sub-regional scale. The example of Wroclaw and its surrounding municipalities. Ekonomia i Środowisko 2016, 4, 87–98. [Google Scholar]
- Szewrański, S.; Kazak, J.; Szkaradkiewicz, M.; Sasik, J. Flood risk factors in suburban area in the context of climate change adaptation policies—Case study of Wroclaw, Poland. J. Ecol. Eng. 2015, 16, 13–18. [Google Scholar] [CrossRef]
- Tokarczyk-Dorociak, K.; Walter, E.; Kobierska, K.; Kołodyński, R. Rainwater management in the urban landscape of Wroclaw in terms of adaptation to climate changes. J. Ecol. Eng. 2017, 18, 171–184. [Google Scholar] [CrossRef]
- Kotowski, A.; Dancewicz, A.; Kazmierczak, B. Distribution of precipitation in the city of Wroclaw. Ochr. Sr. 2010, 32, 37–46. [Google Scholar]
Land Cover | Cover Pattern |
---|---|
Arable land (annual crops) | 46.86% |
Pastures | 26.07% |
Discontinuous Dense Urban Fabric (S.L.: 50–80%) | 9.59% |
Continuous Urban Fabric (S.L. > 80%) | 4.95% |
Discontinuous Very Low Density Urban Fabric (S.L. < 10%) | 4.88% |
Other roads and associated land | 2.86% |
Discontinuous Medium Density Urban Fabric (S.L.: 30–50%) | 1.14% |
Construction sites | 1.00% |
Land without current use | 0.74% |
Isolated Structures | 0.71% |
Industrial, commercial, public, military and private units | 0.52% |
Herbaceous vegetation associations (natural grassland. moors…) | 0.35% |
Green urban areas | 0.20% |
Discontinuous Low Density Urban Fabric (S.L.: 10–30%) | 0.12% |
Grand Total | 100.00% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewrański, S.; Chruściński, J.; Kazak, J.; Świąder, M.; Tokarczyk-Dorociak, K.; Żmuda, R. Pluvial Flood Risk Assessment Tool (PFRA) for Rainwater Management and Adaptation to Climate Change in Newly Urbanised Areas. Water 2018, 10, 386. https://doi.org/10.3390/w10040386
Szewrański S, Chruściński J, Kazak J, Świąder M, Tokarczyk-Dorociak K, Żmuda R. Pluvial Flood Risk Assessment Tool (PFRA) for Rainwater Management and Adaptation to Climate Change in Newly Urbanised Areas. Water. 2018; 10(4):386. https://doi.org/10.3390/w10040386
Chicago/Turabian StyleSzewrański, Szymon, Jakub Chruściński, Jan Kazak, Małgorzata Świąder, Katarzyna Tokarczyk-Dorociak, and Romuald Żmuda. 2018. "Pluvial Flood Risk Assessment Tool (PFRA) for Rainwater Management and Adaptation to Climate Change in Newly Urbanised Areas" Water 10, no. 4: 386. https://doi.org/10.3390/w10040386
APA StyleSzewrański, S., Chruściński, J., Kazak, J., Świąder, M., Tokarczyk-Dorociak, K., & Żmuda, R. (2018). Pluvial Flood Risk Assessment Tool (PFRA) for Rainwater Management and Adaptation to Climate Change in Newly Urbanised Areas. Water, 10(4), 386. https://doi.org/10.3390/w10040386