Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Data
2.3. In Situ Radiometric Data
2.4. In Situ IOPs
2.5. QAA General Context
2.6. Re-Parameterization of QAAOMW
2.7. Validation and Accuracy Assessment
3. Results
3.1. Water Quality Characterization
3.2. OSCs Relative Contribution
3.3. Performance of Existing QAAs
3.4. Re-Parameterization of QAA to Derive
3.5. Re-Parameterization of QAA to Derive
3.6. Re-Parameterization of QAA to Derive
3.7. Model Validation
4. Discussion
4.1. Linking QAAOMW-Derived IOP Variability to Physical and Meteorological Conditions
4.2. Other Factors Influencing the Bio-Optical Characteristics of the Reservoir
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brönmark, C.; Hansson, L.-A. Environmental issues in lakes and ponds: Current state and perspectives. Environ. Conserv. 2002, 29. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Rotta, L.H.S.; Mishra, D.R.; Alcântara, E.H.; Imai, N.N. Analyzing the status of submerged aquatic vegetation using novel optical parameters. Int. J. Remote Sens. 2016, 37, 3786–3810. [Google Scholar] [CrossRef]
- Welch, E.B.; Lindell, T. Ecological Effects of Wastewater: Applied Limnology and Pollution Effects; CRC Press: Boca Raton, FL, USA, 1992; ISBN 0203038495. [Google Scholar]
- Alcântara, E.; Novo, E.; Stech, J.; Lorenzzetti, J.; Barbosa, C.; Assireu, A.; Souza, A. A contribution to understanding the turbidity behaviour in an Amazon floodplain. Hydrol. Earth Syst. Sci. 2010, 14, 351–364. [Google Scholar] [CrossRef]
- Yacobi, Y.Z.; Moses, W.J.; Kaganovsky, S.; Sulimani, B.; Leavitt, B.C.; Gitelson, A.A. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res. 2011, 45, 2428–2436. [Google Scholar] [CrossRef] [PubMed]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Morel, A. In-water and remote measurements of ocean color. Bound.-Layer Meteorol. 1980, 18, 177–201. [Google Scholar] [CrossRef]
- Carder, K.L.; Chen, F.R.; Lee, Z.P.; Hawes, S.K.; Kamykowski, D. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res. Ocean. 1999, 104, 5403–5421. [Google Scholar] [CrossRef]
- Shanmugam, P.; Ahn, Y.H.; Ryu, J.H.; Sundarabalan, B. An evaluation of inversion models for retrieval of inherent optical properties from ocean color in coastal and open sea waters around Korea. J. Oceanogr. 2010, 66, 815–830. [Google Scholar] [CrossRef]
- Gould, R.W., Jr.; Arnone, R.A.; Sydor, M. Absorption, Scattering, and Remote-Sensing Reflectance Relationships in Coastal Waters: Testing a New Inversion Algorithm. J. Coast. Res. 2001, 17, 328–341. [Google Scholar]
- Sathyendranath, S.; Cota, G.; Stuart, V.; Maass, H.; Platt, T. Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches. Int. J. Remote Sens. 2001, 22, 249–273. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Ogashawara, I. Terminology and classification of bio-optical algorithms. Remote Sens. Lett. 2015, 6, 613–617. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 2002, 23, 15–35. [Google Scholar] [CrossRef]
- Brando, V.E.; Dekker, A.G.; Park, Y.J.; Schroeder, T. Adaptive semianalytical inversion of ocean color radiometry in optically complex waters. Appl. Opt. 2012, 51, 2808. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery; Lecture Notes on Coastal and Estuarine Studies; Springer: New York, NY, USA, 1983; Volume 4, ISBN 978-0-387-90923-3. [Google Scholar]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755. [Google Scholar] [CrossRef] [PubMed]
- Le, C.F.; Li, Y.M.; Zha, Y.; Sun, D.; Yin, B. Validation of a quasi-analytical algorithm for highly turbid eutrophic water of meiliang bay in Taihu Lake, China. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2492–2500. [Google Scholar] [CrossRef]
- Yang, W.; Matsushita, B.; Chen, J.; Yoshimura, K.; Fukushima, T. Retrieval of inherent optical properties for turbid inland waters from remote-sensing reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3761–3773. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Lee, Z. Bio-optical inversion in highly turbid and cyanobacteria-dominated waters. IEEE Trans. Geosci. Remote Sens. 2014, 52, 375–388. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Lee, Z.; Tucker, C.S. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach. Remote Sens. Environ. 2013, 133, 141–151. [Google Scholar] [CrossRef]
- Watanabe, F.; Mishra, D.R.; Astuti, I.; Rodrigues, T.; Alcântara, E.; Imai, N.N.; Barbosa, C. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS J. Photogramm. Remote Sens. 2016, 121, 28–47. [Google Scholar] [CrossRef]
- Lee, Z.; Lubac, B.; Werdell, J.; Arnone, R. An Update of the Quasi-Analytical Algorithm (QAA_v5); International Ocean Color Group Software Report. International Ocean-Color Coordinating Group, 2009; pp. 1–9. Available online: http://ioccg.org/groups/Software_OCA/QAA_v5.pdf (accessed on 25 September 2015).
- Petesse, M.L.; Petrere, M.; Agostinho, A.A. Defining a fish bio-assessment tool to monitoring the biological condition of a cascade reservoirs system in tropical area. Ecol. Eng. 2014, 69, 139–150. [Google Scholar] [CrossRef]
- Torloni, C.E.C.; Corrêa, A.R.A.; Carvalho, A.A., Jr.; Santos, J.J.; Gonçalves, J.L.; Gereto, E.J.; Cruz, J.A.; Moreira, J.A.; Silva, D.C.; Deus, E.F.; et al. Produção Pesqueira e Composição das Capturas em Reservatórios sob 892 Concessão da CESP nos Rios Tietê, Paraná e Grande, no Período de 1986 a 1991; Companhia Energetica de Sao Paulo (CESP): São Paulo, Brazil, 1993; 73p. [Google Scholar]
- Rodgher, S.; Espíndola, E.L.G.; Rocha, O.; Fracácio, R.; Pereira, R.H.G.; Rodrigues, M.H.S. Limnological and ecotoxicological studies in the cascade of reservoirs in the Tietê River (São Paulo, Brazil). Braz. J. Biol. 2005, 65, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.S.; Espíndola, E.L.G.; Rocha, O. Environmental gradient in reservoirs of the medium and low Tietê River: Limnological differences through the habitat sequence. Acta Limnol. Bras. 2014, 26, 73–88. [Google Scholar] [CrossRef]
- Rodrigues, T.W.P.; Guimarães, U.S.; Rotta, L.H.D.S.; Watanabe, F.S.Y.; Alcântara, E.; Imai, N.N. Delineamento amostral em reservatórios utilizando imagens landsat-8/OLI: Um estudo de caso no reservatório de Nova Avanhandava (estado de São Paulo, Brasil). Bol. Cienc. Geod. 2016, 22, 303–323. [Google Scholar] [CrossRef]
- Golterman, H.L.; Clymo, R.S.; Ohnstad, M.A.M. Methods for Physical and Chemical Analysis of Freshwaters, 2nd ed.; 1BP Handbook No 8; Blackwell Scientific Publications: Oxford/Edinburgh/London, UK; Melbourne, Australia, 1978; 213p. [Google Scholar]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA; AWWA; WEF: Washington, DC, USA, 1998; pp. 2–54. [Google Scholar]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.L. In-water radiometric profile measurements and data analysis protocols. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, 2nd ed.; Fargion, G.S., Mueller, J.L., Eds.; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 2000; 184p. [Google Scholar]
- Gordon, H.R. A methodology for dealing with broad spectral. Appl. Opt. 1995, 34, 8363–8374. [Google Scholar] [CrossRef] [PubMed]
- Pelloquin, C.; Nieke, J. SENTINEL-3 Spectral Response Functions for Optical Instruments (Version CDR); Tech. Note. European Space Agency, 2012; pp. 1–4. Available online: https://earth.esa.int/web/guest/home (accessed on 26 September 2015).
- Tassan, S.; Ferrari, G.M. An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol. Oceanogr. 1995, 40, 1358–1368. [Google Scholar] [CrossRef]
- Tassan, S.; Ferrari, G.M. A sensitivity analysis of the “Transmittance-Reflectance” method for measuring light absorption by aquatic particles. J. Plankton Res. 2002, 24, 757–774. [Google Scholar] [CrossRef]
- Babin, M.; Stramski, D.; Ferrari, G.; Claustre, H.; Bricuad, A.; Obolensky, G.; Hoepffner, N. Variations in the light absorption coefficient of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 2003, 108, 1–19. [Google Scholar] [CrossRef]
- Green, S.A.; Blough, N.V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 1994, 39, 1903–1916. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Hawes, S.K.; Steward, R.G.; Peacock, T.G.; Davis, C.O. Model for the interpretation of hyperspectral remote-sensing reflectance. Appl. Opt. 1994, 33, 5721. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, P.; Sundarabalan, B.; Ahn, Y.H.; Ryu, J.H. A new inversion model to retrieve the particulate backscattering in coastal/ocean waters. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2463–2475. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Chen, R.F.; Gardner, G.B. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef]
- Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Smith, R.C.; Baker, K.S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 1981, 20, 177. [Google Scholar] [CrossRef] [PubMed]
- Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F.E. Remote sensing of particle backscattering in Chesapeake Bay: A 6-year SeaWiFS retrospective view. Estuar. Coast. Shelf Sci. 2007, 73, 792–806. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, O.B.; Jacobs, M.M. Computed Relationships between the Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean. Appl. Opt. 1975, 14, 417. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef] [PubMed]
- Doerffer, R.; Fischer, J. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. J. Geophys. Res. 1994, 99, 7457–7466. [Google Scholar] [CrossRef]
- Carder, K.L.; Steward, R.G.; Harvey, G.R.; Ortner, P.B. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnol. Oceanogr. 1989, 34, 68–81. [Google Scholar] [CrossRef]
- Carder, K.L.; Hawes, S.K.; Baker, K.A.; Smith, R.C.; Steward, R.G.; Mitchell, B.G. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. J. Geophys. Res. 1991, 96, 20599. [Google Scholar] [CrossRef]
- Roesler, C.S.; Perry, M.J.; Carder, K.L. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol. Oceanogr. 1989, 34, 1510–1523. [Google Scholar] [CrossRef]
- Lee, Z.; Arnone, R.; Hu, C.; Werdell, P.J.; Lubac, B. Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm. Appl. Opt. 2010, 49, 369. [Google Scholar] [CrossRef] [PubMed]
- Ogashawara, I.; Mishra, D.R.; Nascimento, R.F.F.; Alcântara, E.H.; Kampel, M.; Stech, J.L. Re-parameterization of a quasi-analytical algorithm for colored dissolved organic matter dominant inland waters. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 128–145. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water II Integrating cavity measurements. Appl. Opt. 1997, 36, 8710. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Jolliff, J.K.; Kindle, J.C.; Shulman, I.; Penta, B.; Friedrichs, M.A.M.; Helber, R.; Arnone, R.A. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst. 2009, 76, 64–82. [Google Scholar] [CrossRef]
- Friedrichs, M.A.M.; Carr, M.-E.; Barber, R.T.; Scardi, M.; Antoine, D.; Armstrong, R.A.; Asanuma, I.; Behrenfeld, M.J.; Buitenhuis, E.T.; Chai, F.; et al. Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J. Mar. Syst. 2009, 76, 113–133. [Google Scholar] [CrossRef]
- Ribeiro-Filho, R.A.; Junior, M.P.; Benassi, S.F.; Pereira, J.M.A. Itaipu reservoir limnology: Eutrophication degree and the horizontal distribution of its limnological variables. Braz. J. Biol. 2011, 71, 889–902. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; English, D.; Cannizzaro, J.; Chen, Z.; Kovach, C.; Anastasiou, C.J.; Zhao, J.; Carder, K.L. Inherent and apparent optical properties of the complex estuarine waters of Tampa Bay: What controls light? Estuar. Coast. Shelf Sci. 2013, 117, 54–69. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, M.L.; Wang, X.; Zhu, G.W.; Chen, W.M. Bio-optical properties and estimation of the optically active substances in Lake Tianmuhu in summer. Int. J. Remote Sens. 2009, 30, 2837–2857. [Google Scholar] [CrossRef]
- Loos, E.A.; Costa, M. Inherent optical properties and optical mass classification of the waters of the Strait of Georgia, British Columbia, Canada. Prog. Oceanogr. 2010, 87, 144–156. [Google Scholar] [CrossRef]
- Qin, Y.; Brando, V.E.; Dekker, A.G.; Blondeau-Patissier, D. Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Mu, G.; Zhao, Y.; Ma, J.; Ren, J. Evaluation of the Quasi-Analytical Algorithm (QAA) for Estimating Total Absorption Coefficient of Turbid Inland Waters in Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4022–4036. [Google Scholar] [CrossRef]
- Tundisi, J.G.; Matsumura-Tundisi, T. Limnology; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-138-07204-6. [Google Scholar]
- Coelho, C.A.S.; Cardoso, D.H.F.; Firpo, M.A.F. Precipitation diagnostics of an exceptionally dry event in São Paulo, Brazil. Theor. Appl. Climatol. 2016, 125, 769–784. [Google Scholar] [CrossRef]
- Khan, S.J.; Deere, D.; Leusch, F.D.L.; Humpage, A.; Jenkins, M.; Cunliffe, D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? Water Res. 2015, 85, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Cairo, C.T.; Barbosa, C.C.F.; de Moraes Novo, E.M.L.; do Carmo Calijuri, M. Spatial and seasonal variation in diffuse attenuation coefficients of downward irradiance at Ibitinga Reservoir, São Paulo, Brazil. Hydrobiologia 2017, 784, 265–282. [Google Scholar] [CrossRef]
- Soares, A.; Mozeto, A.A. Water Quality in the Tietê River Reservoirs (Billings, Barra Bonita, Bariri and Promissão, SP-Brazil) and Nutrient Fluxes across the Sediment-Water Interface (Barra Bonita). Acta Limnol. Bras. 2006, 18, 247–266. [Google Scholar]
- Cunha, D.G.F.; Sabogal-Paz, L.P.; Dodds, W.K. Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecol. Eng. 2016, 94, 516–524. [Google Scholar] [CrossRef]
- Ritter, W.F.; Shirmohammadi, A. (Eds.) Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-1-566-70222-5. [Google Scholar]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Perbiche-Neves, G.; Ferreira, R.A.R.; Nogueira, M.G. Phytoplankton structure in two contrasting cascade reservoirs (Paranapanema River, Southeast Brazil). Biologia 2011, 66, 967–976. [Google Scholar] [CrossRef]
- Nogueira, M.G.; Henry, R.; Maricatto, F.E. Spatial and temporal heterogeneity in the Jurumirim Reservoir. Lake Reserv. Res. Manag. 1999, 4, 107–120. [Google Scholar] [CrossRef]
- Mouri, G.; Takizawa, S.; Oki, T. Spatial and temporal variation in nutrient parameters in stream water in a rural-urban catchment, Shikoku, Japan: Effects of land cover and human impact. J. Environ. Manag. 2011, 92, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Le, C.; Lehrter, J.C.; Hu, C.; Schaeffer, B.; Macintyre, H.; Hagy, J.D.; Beddick, D.L. Relation between inherent optical properties and land use and land cover across Gulf Coast estuaries. Limnol. Oceanogr. 2015, 60, 920–933. [Google Scholar] [CrossRef]
- Barbosa, F.A.R.; Padisák, J.; Espíndola, E.L.G.; Borics, G.; Rocha, O. The cascading reservoir continuum concept (CRCC) and its application to the river Tietê-basin, São Paulo State, Brazil. In Proceedings of the Workshop on Theoretical Reservoir Ecology, Sao Pedro, Brazil, 25–30 January 1999; pp. 425–437. [Google Scholar]
- Wu, G.F.; Cui, L.J.; Duan, H.T.; Fei, T.; Liu, Y.L. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China. Appl. Opt. 2011, 50, 6358–6368. [Google Scholar] [CrossRef] [PubMed]
Symbol | Description | Unit |
---|---|---|
Absorption coefficient of pure water | m−1 | |
Represented by the subtraction between | m−1 | |
Absorption coefficient of detritus | m−1 | |
Absorption coefficient of colored dissolved organic matter (CDOM) | m−1 | |
Absorption coefficient of CDOM and detritus | m−1 | |
Absorption coefficient of particulate matter | m−1 | |
Absorption coefficient of phytoplankton | m−1 | |
Total absorption coefficient, | m−1 | |
Backscattering coefficient of pure water | m−1 | |
Backscattering coefficient of particulate matter | m−1 | |
Total backscattering coefficient, | m−1 | |
Spectral power for backscattering coefficient | - | |
Above-surface remote sensing reflectance | sr−1 | |
Subsurface remote sensing reflectance | sr−1 | |
Ratio of backscattering coefficient to the sum of backscattering and absorption coefficients | Unitless | |
Spectral slope of colored detrital matter absorption coefficient | nm−1 | |
- | ||
- | ||
Reference wavelength | nm |
Property | QAALv5 | QAAOMW |
---|---|---|
where | where | |
— | ||
where |
Average | SD | Minimum | Maximum | CV (%) | n | |
---|---|---|---|---|---|---|
April–May 2014 | ||||||
(m−1) | 0.74 | 0.11 | 0.49 | 1.06 | 15.45 | 18 |
(m−1) | 0.16 | 0.05 | 0.10 | 0.29 | 31.55 | 18 |
(m−1) | 0.04 | 0.02 | 0.02 | 0.09 | 48.49 | 18 |
(m−1) | 0.08 | 0.03 | 0.04 | 0.16 | 35.31 | 18 |
(m−1) | 0.32 | 0.08 | 0.13 | 0.55 | 25.06 | 18 |
(m−1) | 0.57 | 0.08 | 0.39 | 0.77 | 13.54 | 18 |
SPM (mg L−1) | 0.95 | 0.63 | 0.10 | 2.60 | 66.04 | 15 |
Chl-a (µg L−1) | 5.95 | 2.11 | 2.46 | 10.65 | 35.46 | 18 |
Chl-a : SPM (µg/mg) | 12.27 | 15.97 | 2.47 | 68.26 | 130.14 | 15 |
Depth (m) | 17.81 | 8.64 | 5.30 | 30.00 | 48.51 | 18 |
Secchi depth (m) | 3.22 | 0.62 | 2.29 | 4.80 | 19.25 | 18 |
Turbidity (NTU) | 1.60 | 0.41 | 1.01 | 2.47 | 25.35 | 18 |
Zenital angle (DD) | 40.15 | 4.38 | 35.45 | 51.96 | 10.90 | 18 |
Wind speed (m s−1) | 3.66 | 1.35 | 2.00 | 6.40 | 36.91 | 18 |
September 2014 | ||||||
(m−1) | 0.88 | 0.21 | 0.58 | 1.45 | 24.02 | 14 |
(m−1) | 0.27 | 0.09 | 0.10 | 0.43 | 33.00 | 14 |
(m−1) | 0.04 | 0.03 | 0.01 | 0.12 | 68.02 | 14 |
(m−1) | 0.09 | 0.04 | 0.02 | 0.16 | 40.52 | 14 |
(m−1) | 0.28 | 0.16 | 0.13 | 0.75 | 55.67 | 14 |
(m−1) | 0.60 | 0.17 | 0.43 | 1.04 | 27.86 | 14 |
SPM (mg L−1) | 0.93 | 0.42 | 0.50 | 2.20 | 45.21 | 13 |
Chl-a (µg L−1) | 7.94 | 3.45 | 3.41 | 16.38 | 43.43 | 14 |
Chl-a : SPM (µg/mg) | 9.83 | 4.23 | 4.75 | 18.57 | 43.05 | 13 |
Depth (m) | 21.56 | 5.27 | 12.00 | 28.00 | 24.44 | 14 |
Secchi depth (m) | 3.14 | 0.86 | 0.90 | 4.65 | 27.58 | 14 |
Turbidity (NTU) | 2.44 | 2.46 | 1.01 | 11.17 | 100.97 | 14 |
Zenital angle (DD) | 29.84 | 9.23 | 20.82 | 47.08 | 30.92 | 14 |
Wind speed (m s−1) | 2.82 | 2.00 | 0.00 | 5.60 | 70.86 | 14 |
May 2016 | ||||||
(m−1) | 0.99 | 0.18 | 0.65 | 1.37 | 17.84 | 19 |
(m−1) | 0.30 | 0.13 | 0.11 | 0.57 | 43.47 | 19 |
(m-1) | 0.06 | 0.05 | 0.00 | 0.15 | 76.24 | 19 |
(m−1) | 0.15 | 0.06 | 0.09 | 0.26 | 38.57 | 19 |
(m−1) | 0.61 | 0.12 | 0.38 | 0.82 | 19.65 | 19 |
(m−1) | 0.68 | 0.12 | 0.45 | 0.91 | 17.68 | 19 |
SPM (mg L−1) | 3.08 | 0.94 | 1.87 | 5.30 | 30.69 | 10 |
Chl-a (µg L−1) | 26.36 | 6.32 | 38.59 | 15.84 | 23.98 | 10 |
Chl-a : SPM (µg/mg) | 8.93 | 1.96 | 4.64 | 12.21 | 21.95 | 10 |
Depth (m) | - | |||||
Secchi depth (m) | 2.97 | 0.63 | 1.91 | 3.80 | 21.03 | 19 |
Turbidity (NTU) | - | |||||
Zenital angle (DD) | 41.10 | 2.33 | 38.78 | 48.15 | 5.67 | 19 |
Wind speed (m s−1) | 3.92 | 2.07 | 0.40 | 600 | 52.86 | 19 |
OLCI Bands | QAALv5 | QAALv6 | QAAM14 | QAAOMW | ||||
---|---|---|---|---|---|---|---|---|
Wavelengths (nm) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) |
412 | 1.21 | 75.88 | 1.01 | 63.01 | 0.93 | 56.21 | 0.35 | 19.74 |
443 | 0.87 | 72.52 | 0.71 | 57.55 | 0.64 | 49.64 | 0.23 | 16.02 |
490 | 0.47 | 65.93 | 0.35 | 46.66 | 0.32 | 41.04 | 0.14 | 16.78 |
510 | 0.37 | 62.96 | 0.26 | 41.76 | 0.24 | 38.12 | 0.13 | 19.02 |
560 | 0.22 | 56.39 | 0.14 | 31.83 | 0.15 | 32.99 | 0.12 | 24.33 |
620 | 0.23 | 43.32 | 0.08 | 13.35 | 0.13 | 20.92 | 0.17 | 29.05 |
665 | 0.34 | 48.56 | 0.16 | 21.48 | 0.13 | 15.30 | 0.09 | 11.17 |
681 | 0.38 | 50.26 | 0.19 | 24.31 | 0.14 | 15.55 | 0.07 | 8.29 |
709 | 0.46 | 46.63 | 0.21 | 20.39 | 0.09 | 9.04 | 0.03 | 2.70 |
Average | 0.51 | 58.05 | 0.35 | 35.59 | 0.31 | 30.98 | 0.15 | 16.35 |
OLCI Bands | QAALv5 | QAALv6 | QAAM14 | QAAOMW | ||||
---|---|---|---|---|---|---|---|---|
Wavelengths (nm) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) |
412 | 1.03 | 81.35 | 0.96 | 75.81 | 0.93 | 72.88 | 0.21 | 12.76 |
443 | 0.74 | 83.90 | 0.69 | 79.13 | 0.67 | 76.61 | 0.13 | 12.99 |
490 | 0.47 | 87.77 | 0.45 | 84.14 | 0.44 | 82.22 | 0.08 | 14.68 |
510 | 0.38 | 89.06 | 0.37 | 85.81 | 0.36 | 84.09 | 0.07 | 15.57 |
560 | 0.22 | 91.53 | 0.21 | 89.02 | 0.21 | 87.70 | 0.04 | 17.98 |
620 | 0.13 | 94.28 | 0.12 | 92.61 | 0.12 | 91.74 | 0.03 | 19.92 |
665 | 0.10 | 96.48 | 0.10 | 95.45 | 0.10 | 94.89 | 0.03 | 21.04 |
681 | 0.10 | 97.15 | 0.09 | 96.31 | 0.09 | 95.86 | 0.03 | 24.18 |
709 | 0.08 | 97.89 | 0.08 | 97.27 | 0.08 | 96.93 | 0.03 | 30.66 |
Average | 0.36 | 91.05 | 0.34 | 88.39 | 0.33 | 86.99 | 0.07 | 18.87 |
OLCI Bands | QAALv5 | QAALv6 | QAAM14 | QAAOMW | ||||
---|---|---|---|---|---|---|---|---|
Wavelengths (nm) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) |
412 | 0.19 | 53.69 | 0.11 | 21.31 | 0.14 | 33.80 | 0.19 | 44.39 |
443 | 0.15 | 40.10 | 0.10 | 25.20 | 0.17 | 45.24 | 0.18 | 42.67 |
490 | 0.04 | 24.02 | 0.14 | 92.11 | 0.22 | 130.02 | 0.10 | 47.57 |
510 | 0.04 | 34.77 | 0.16 | 150.98 | 0.22 | 184.86 | 0.08 | 47.97 |
560 | 0.03 | 42.49 | 0.16 | 238.37 | 0.18 | 229.39 | 0.05 | 47.28 |
620 | 0.11 | 100.73 | 0.33 | 402.82 | 0.19 | 173.98 | 0.06 | 45.56 |
665 | 0.25 | 157.52 | 0.37 | 264.71 | 0.11 | 56.92 | 0.09 | 46.47 |
681 | 0.29 | 167.75 | 0.38 | 241.91 | 0.10 | 42.84 | 0.10 | 46.04 |
709 | 0.38 | 870.85 | 0.69 | 1858.15 | 0.04 | 63.91 | 0.04 | 53.29 |
Average | 0.16 | 165.77 | 0.27 | 366.17 | 0.15 | 106.77 | 0.10 | 46.80 |
OLCI Bands | ||||||
---|---|---|---|---|---|---|
Wavelengths (nm) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) |
412 | 0.43 | 36.00 | 0.56 | 66.21 | 0.14 | 41.23 |
443 | 0.36 | 41.40 | 0.44 | 78.30 | 0.13 | 39.27 |
490 | 0.30 | 57.66 | 0.28 | 79.34 | 0.08 | 46.24 |
510 | 0.26 | 59.74 | 0.22 | 73.89 | 0.05 | 44.65 |
560 | 0.20 | 62.81 | 0.12 | 58.89 | 0.03 | 85.02 |
620 | 0.26 | 54.15 | 0.05 | 30.95 | 0.04 | 176.35 |
665 | 0.16 | 22.81 | 0.04 | 19.37 | 0.08 | 94.12 |
681 | 0.10 | 12.65 | 0.05 | 26.54 | 0.08 | 70.31 |
709 | 0.05 | 4.15 | 0.05 | 35.82 | - | - |
Average | 0.23 | 39.04 | 0.20 | 52.15 | 0.08 | 74.65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, T.; Mishra, D.R.; Alcântara, E.; Astuti, I.; Watanabe, F.; Imai, N. Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters. Water 2018, 10, 449. https://doi.org/10.3390/w10040449
Rodrigues T, Mishra DR, Alcântara E, Astuti I, Watanabe F, Imai N. Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters. Water. 2018; 10(4):449. https://doi.org/10.3390/w10040449
Chicago/Turabian StyleRodrigues, Thanan, Deepak R. Mishra, Enner Alcântara, Ike Astuti, Fernanda Watanabe, and Nilton Imai. 2018. "Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters" Water 10, no. 4: 449. https://doi.org/10.3390/w10040449
APA StyleRodrigues, T., Mishra, D. R., Alcântara, E., Astuti, I., Watanabe, F., & Imai, N. (2018). Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters. Water, 10(4), 449. https://doi.org/10.3390/w10040449