Estimation of the Source Apportionment of Phosphorus and Its Responses to Future Climate Changes Using Multi-Model Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Model Methods
2.3.1. Watershed Hydrochemical Modeling
2.3.2. Future Weather Modeling
2.3.3. Linkage of Model Applications
3. Results
3.1. Model Outputs
3.1.1. LARS-WG Model
3.1.2. ReNuMa Model
3.2. Current Watershed Phosphorus Source Apportionment
3.3. Responses of Watershed Phosphorus to Future Climate Changes
4. Discussion
4.1. Estimations of Model Reliability
4.2. Property of Phosphorus Apportionment and Potential Contribution to Management
5. Conclusions
- (1)
- The current Dis-P fluxes of the study watershed came mainly from non-point sources involved in planting and rural living. The fluxes and source apportionments of Dis-P were variable in different months. High fluxes were mainly distributed from May to September with runoff as the primary contribution source. Although not remarkable on the annual scale, the contribution from septic systems was the primary source in December, January and February. The fluxes and source apportionments of Dis-P were sensitive to the regional weather and hydrological conditions, which were significant for response estimations.
- (2)
- The hotter and wetter climate trends in the future would have generally positive impacts on the watershed Dis-P yields. A continuously increasing trend would occur for scenarios A1B and A2, and a V-type trend would occur for scenario B1 with more intensive increases in the annual Dis-P fluxes in extreme low-flux years. In addition, future climate changes would increase the proportion of the Dis-P contribution from runoff, leading to heavier demands for runoff pollution control in future local watershed management.
- (3)
- The coupled modeling application of LARS-WG and GWLF could achieve quantitative estimations of future watershed hydrological processes under changed climate statuses, and the linkage of model applications in this paper could be used as a reference for watershed management in similar areas.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Powers, S.M.; Bruulsema, T.W.; Burt, T.P.; Chan, N.I.; Elser, J.J.; Haygarth, P.M.; Howden, N.J.K.; Jarvie, H.P.; Lyu, Y.; Peterson, H.M.; et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 2016, 9, 353. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Du, J.; Zhang, X.; Su, N.; Li, J. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) Estuary in recent decades (1955−2008). Environ. Sci. Technol. 2011, 45, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Bu, X.; Chen, J.; Zhou, F.; Chen, L.; Liu, M.; Tan, X.; Yu, T.; Zhang, W.; Mi, Z.; et al. Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources. J. Hazard. Mater. 2017, 321, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Li, Y.; Li, B.; Han, W.; Liu, D.; Gan, X. Nitrogen and phosphorus losses by runoff erosion: Field data monitored under natural rainfall in Three Gorges Reservoir Area, China. Catena 2016, 147, 797–808. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, M.; Lu, P. The effect of dams on phosphorus in the middle and lower Yangtze river. Water Resour. Res. 2013, 49, 3659–3669. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, M.; Lin, B.; Lu, P. Lowland fluvial phosphorus altered by dams. Water Resour. Res. 2015, 51, 2211–2226. [Google Scholar] [CrossRef]
- Shen, Z.; Zhong, Y.; Huang, Q.; Chen, L. Identifying non-point source priority management areas in watersheds with multiple functional zones. Water Res. 2015, 68, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Nejadhashemi, A.P.; Woznicki, S.A. Evaluation of targeting methods for implementation of best management practices in the saginaw river watershed. J. Environ. Manag. 2012, 103, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Chen, L.; Ding, X.; Hong, Q.; Liu, R. Long-term variation (1960–2003) and causal factors of non-point-source nitrogen and phosphorus in the upper reach of the Yangtze River. J. Hazard. Mater. 2013, 252, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Xue, Y.; Lin, M.; Liu, Y. Effects of precipitation and topography on total phosphorus loss from purple soil. Water 2017, 9, 315. [Google Scholar] [CrossRef]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrol. Process. 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Keitzer, S.C.; Ludsin, S.A.; Sowa, S.P.; Annis, G.; Arnold, J.G.; Daggupati, P.; Froehlich, A.M.; Herbert, M.E.; Johnson, M.-V.V.; Sasson, A.M.; et al. Thinking outside of the lake: Can controls on nutrient inputs into lake erie benefit stream conservation in its watershed? J. Great Lakes Res. 2016, 42, 1322–1331. [Google Scholar] [CrossRef]
- White, M.; Gambone, M.; Yen, H.; Daggupati, P.; Bieger, K.; Deb, D.; Arnold, J. Development of a cropland management dataset to support US SWAT assessments. J. Am. Water Resour. Assoc. 2016, 52, 269–274. [Google Scholar] [CrossRef]
- Gill, L.W.; Mockler, E.M. Modeling the pathways and attenuation of nutrients from domestic wastewater treatment systems at a catchment scale. Environ. Model. Softw. 2016, 84, 363–377. [Google Scholar] [CrossRef]
- Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, J.L.; Amatya, D.M.; Skaggs, R.W.; et al. Hydrological processes and model representation: Impact of soft data on calibration. Trans. ASABE 2015, 58, 1637–1660. [Google Scholar]
- Krysanova, V.; Srinivasan, R. Assessment of climate and land use change impacts with SWAT. Reg. Environ. Chang. 2015, 15, 431–434. [Google Scholar] [CrossRef]
- Hua, X.; Claudia, R. Agricultural nutrient loadings to the freshwater environment: The role of climate change and socioeconomic change. Environ. Res. Lett. 2017, 12, 104008. [Google Scholar]
- Hong, B.; Limburg, K.E.; Hall, M.H.; Mountrakis, G.; Groffman, P.M.; Hyde, K.; Luo, L.; Kelly, V.R.; Myers, S.J. An integrated monitoring/modeling framework for assessing human–nature interactions in urbanizing watersheds: Wappinger and Onondaga Creek watersheds, New York, USA. Environ. Model. Softw. 2012, 32, 1–15. [Google Scholar] [CrossRef]
- Haith, D.A.; Shoemaker, L.L. Generalized watershed loading functions for stream flow nutrients. J. Am. Water Resour. Assoc. 1987, 23, 471–478. [Google Scholar] [CrossRef]
- Sha, J.; Liu, M.; Wang, D.; Swaney, D.P.; Wang, Y. Application of the ReNuMa model in the Sha He river watershed: Tools for watershed environmental management. J. Environ. Manag. 2013, 124, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Su, J.; Li, X.; Zhang, W. Modeling and evaluating of non-point source pollution in a semi-arid watershed: Implications for watershed management. CLEAN-Soil Air Water 2016, 44, 247–255. [Google Scholar] [CrossRef]
- Sharifi, A.; Yen, H.; Boomer, K.M.B.; Kalin, L.; Li, X.; Weller, D.E. Using multiple watershed models to assess the water quality impacts of alternate land development scenarios for a small community. Catena 2017, 150, 87–99. [Google Scholar] [CrossRef]
- Wu, J.; Franzén, D.; Malmström, M.E. Nutrient flows following changes in source strengths, land use and climate in an urban catchment, Råcksta Träsk in Stockholm, Sweden. Ecol. Model. 2016, 338, 69–77. [Google Scholar] [CrossRef]
- Ayele, H.S.; Li, M.H.; Tung, C.P.; Liu, T.M. Assessing Climate Change Impact on Gilgel Abbay and Gumara Watershed Hydrology, the Upper Blue Nile Basin, Ethiopia. Terr. Atmos. Ocean. Sci. 2016, 27, 1005–1018. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, J.; Zhao, Y.; Tang, J.; Jia, Z. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT. Sci. Rep. 2018, 8, 2402. [Google Scholar] [CrossRef] [PubMed]
- Hanel, M.; Kožín, R.; Heřmanovský, M.; Roub, R. An R package for assessment of statistical downscaling methods for hydrological climate change impact studies. Environ. Model. Softw. 2017, 95, 22–28. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Zhang, Z.; Xu, C.-Y. Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future. Theor. Appl. Climatol. 2013, 113, 363–375. [Google Scholar] [CrossRef]
- Naderi, M.; Raeisi, E. Climate change in a region with altitude differences and with precipitation from various sources, South-Central Iran. Theor. Appl. Climatol. 2016, 124, 529–540. [Google Scholar] [CrossRef]
- Mahat, V.; Anderson, A. Impacts of climate and catastrophic forest changes on streamflow and water balance in a mountainous headwater stream in Southern Alberta. Hydrol. Earth Syst. Sci. 2013, 17, 4941–4956. [Google Scholar] [CrossRef]
- Le, T.; Sharif, H. Modeling the projected changes of river flow in central vietnam under different climate change scenarios. Water 2015, 7, 3579–3598. [Google Scholar] [CrossRef]
- Jayakody, P.; Parajuli, P.B.; Cathcart, T.P. Impacts of climate variability on water quality with best management practices in sub-tropical climate of USA. Hydrol. Process. 2014, 28, 5776–5790. [Google Scholar] [CrossRef]
- Yang, X.; Warren, R.; He, Y.; Ye, J.; Li, Q.; Wang, G. Impacts of climate change on tn load and its control in a river basin with complex pollution sources. Sci. Total Environ. 2018, 615, 1155–1163. [Google Scholar] [CrossRef]
- Qin, X.S.; Lu, Y. Study of climate change impact on flood frequencies: A combined weather generator and hydrological modeling approach. J. Hydrometeorol. 2014, 15, 1205–1219. [Google Scholar] [CrossRef]
- Li, Z.L.; Liu, M.H.; Zhao, Y.; Liang, T.; Sha, J.; Wang, Y.Q. Application of regional nutrient management model in tunxi catchment: In support of the trans-boundary eco-compensation in Eastern China. Clean-Soil Air Water 2014, 42, 1729–1739. [Google Scholar] [CrossRef]
- Hu, M.; Liu, Y.; Wang, J.; Dahlgren, R.A.; Chen, D. A modification of the regional nutrient management model (ReNuMa) to identify long-term changes in riverine nitrogen sources. J. Hydrol. 2018, 561, 31–42. [Google Scholar] [CrossRef]
- Schneiderman, E.M.; Pierson, D.C.; Lounsbury, D.G.; Zion, M.S. Modeling the hydrochemistry of the cannonsville watershed with generalized watershed loading functions (GWLF). J. Am. Water Resour. Assoc. 2002, 38, 1323–1347. [Google Scholar] [CrossRef]
- Sha, J.; Swaney, D.P.; Hong, B.; Wang, J.; Wang, Y.; Wang, Z.-L. Estimation of watershed hydrologic processes in arid conditions with a modified watershed model. J. Hydrol. 2014, 519, 3550–3556. [Google Scholar] [CrossRef]
- Rouholahnejad Freund, E.; Abbaspour, K.; Lehmann, A. Water Resources of the Black Sea Catchment under Future Climate and Landuse Change Projections. Water 2017, 9, 598. [Google Scholar] [CrossRef]
- Zhai, M.; Lin, Q.; Huang, G.; Zhu, L.; An, K.; Li, G.; Huang, Y. Adaptation of Cascade Hydropower Station Scheduling on a Headwater Stream of the Yangtze River under Changing Climate Conditions. Water 2017, 9, 293. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S. Assessment of impacts of climate change on the water resources of the transboundary Jhelum River basin of Pakistan and India. Water 2016, 8, 246. [Google Scholar] [CrossRef]
- Duan, J.G.; Bai, Y.; Dominguez, F.; Rivera, E.; Meixner, T. Framework for incorporating climate change on flood magnitude and frequency analysis in the upper Santa Cruz River. J. Hydrol. 2017, 549, 194–207. [Google Scholar] [CrossRef]
- Kumar, D.; Arya, D.S.; Murumkar, A.R.; Rahman, M.M. Impact of climate change on rainfall in northwestern Bangladesh using multi-GCM ensembles. Int. J. Climatol. 2014, 34, 1395–1404. [Google Scholar] [CrossRef]
- Reddy, K.S.; Kumar, M.; Maruthi, V.; Umesha, B.; Vijayalaxmi; Rao, C. Climate change analysis in southern Telangana region, Andhra Pradesh using LARS-WG model. Curr. Sci. 2014, 107, 54–62. [Google Scholar]
- Sarkar, J.; Chicholikar, J.R.; Rathore, L.S. Predicting future changes in temperature and precipitation in arid climate of Kutch, Gujarat: Analyses based on LARS-WG model. Curr. Sci. 2015, 109, 2084–2093. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, X.; Li, C.; Zhao, S.; Pen, F.; Green, T. Simulation of hydrology and nutrient transport in the Hetao Irrigation District, Inner Mongolia, China. Water 2017, 9, 169. [Google Scholar] [CrossRef]
- Qi, Z.; Kang, G.; Chu, C.; Qiu, Y.; Xu, Z.; Wang, Y. Comparison of SWAT and GWLF Model Simulation Performance in Humid South and Semi-Arid North of China. Water 2017, 9, 567. [Google Scholar] [CrossRef]
- Du, X.; Li, X.; Zhang, W.; Wang, H. Variations in source apportionments of nutrient load among seasons and hydrological years in a semi-arid watershed: GWLF model results. Environ. Sci. Pollut. Res. 2014, 21, 6506–6515. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Wang, X.; White, M.; Tuppad, P.; Srinivasan, R.; Narasimhan, B.; Andrews, D. Modeling Water-Quality Loads to the Reservoirs of the Upper Trinity River Basin, Texas, USA. Water 2015, 7, 5689–5704. [Google Scholar] [CrossRef]
- Sha, J.; Li, Z.; Swaney, D.P.; Hong, B.; Wang, W.; Wang, Y. Application of a Bayesian watershed model linking multivariate statistical analysis to support watershed-scale nitrogen management in China. Water Resour. Manag. 2014, 28, 3681–3695. [Google Scholar] [CrossRef]
- Ross, J.A.; Herbert, M.E.; Sowa, S.P.; Frankenberger, J.R.; King, K.W.; Christopher, S.F.; Tank, J.L.; Arnold, J.G.; White, M.J.; Yen, H. A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management. Agric. Water Manag. 2016, 178, 366–376. [Google Scholar] [CrossRef]
- Yen, H.; White, M.J.; Arnold, J.G.; Keitzer, S.C.; Johnson, M.-V.V.; Atwood, J.D.; Daggupati, P.; Herbert, M.E.; Sowa, S.P.; Ludsin, S.A.; et al. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios. Sci. Total Environ. 2016, 569–570, 1265–1281. [Google Scholar] [CrossRef] [PubMed]
- Scavia, D.; Kalcic, M.; Muenich, R.L.; Read, J.; Aloysius, N.; Bertani, I.; Boles, C.; Confesor, R.; DePinto, J.; Gildow, M.; et al. Multiple models guide strategies for agricultural nutrient reductions. Front. Ecol. Environ. 2017, 15, 126–132. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, W.; Wang, X.; Couture, R.-M.; Larssen, T.; Zhao, Y.; Li, J.; Liang, H.; Liu, X.; Bu, X.; et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat. Geosci. 2017, 10, 507–511. [Google Scholar] [CrossRef]
Name | Source | Resolution | Remark |
---|---|---|---|
Digital Elevation Model | Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn) | 90 m × 90 m raster | SRTM 3 |
Land Use Cover Maps | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn) | 1 km raster with percentages for each land use type | 2010 |
Weather Data | Climatic Data Center, National Meteorological Information Center, China Meteorological Administration (http://data.cma.cn) | Daily temperature and precipitation | 1955–2015 |
Hydrological Records | Annual Hydrological Report P. R. China (National Library of China) | Monthly streamflow | 2009–2015 |
Dissolved Phosphorus Records | China National Environmental Monitoring Centre | Monthly concentration | 2011–2015 |
Items | Total Tests | Number of Significant Differences | Percentage of Significant Differences (%) | Whether a Month Had Significantly Different Results | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sep. | Oct. | Nov. | Dec. | ||||
WDSeries 1 | 8 | 0 | 0.0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
PrecD 2 | 12 | 0 | 0.0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
PMM 3 | 12 | 0 | 0.0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
PMV 4 | 12 | 0 | 0.0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
TminD 5 | 12 | 0 | 0.0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
TminM 6 | 12 | 2 | 16.67 | Y | Y | N | Y | Y | Y | Y | Y | N | Y | Y | Y |
TmaxD 7 | 12 | 0 | 0.0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
TmaxM 8 | 12 | 0 | 0.0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, J.; Wang, Z.-L.; Lu, R.; Zhao, Y.; Li, X.; Shang, Y.-T. Estimation of the Source Apportionment of Phosphorus and Its Responses to Future Climate Changes Using Multi-Model Applications. Water 2018, 10, 468. https://doi.org/10.3390/w10040468
Sha J, Wang Z-L, Lu R, Zhao Y, Li X, Shang Y-T. Estimation of the Source Apportionment of Phosphorus and Its Responses to Future Climate Changes Using Multi-Model Applications. Water. 2018; 10(4):468. https://doi.org/10.3390/w10040468
Chicago/Turabian StyleSha, Jian, Zhong-Liang Wang, Rui Lu, Yue Zhao, Xue Li, and Yun-Tao Shang. 2018. "Estimation of the Source Apportionment of Phosphorus and Its Responses to Future Climate Changes Using Multi-Model Applications" Water 10, no. 4: 468. https://doi.org/10.3390/w10040468
APA StyleSha, J., Wang, Z. -L., Lu, R., Zhao, Y., Li, X., & Shang, Y. -T. (2018). Estimation of the Source Apportionment of Phosphorus and Its Responses to Future Climate Changes Using Multi-Model Applications. Water, 10(4), 468. https://doi.org/10.3390/w10040468