Effects of Bank Vegetation and Incision on Erosion Rates in an Urban Stream
Abstract
:1. Introduction
1.1. Urban Streams and Sediment Stressors
1.2. Measuring Fluvial Sediment Erosion
1.3. Riparian Zones and Sediment Flux
1.4. Objectives
2. Materials and Methods
2.1. Study Area
2.2. Monitoring Erosion
2.3. Streambed and Bank Characterization
2.4. Data Analysis
3. Results
3.1. Logger Site Comparison
3.2. Bank Pins: Erosional Events
3.3. Turbidity Response to Storm Events
4. Discussion
4.1. Summary of Findings
4.2. Implications for Bank Management
4.3. Implications for Sediment Budgets
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groddman, P.M.; Morgan, R.P.I. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Walter, R.; Merritts, D. Natural streams and the legacy of water-powered milling. Science 2008, 319, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.G.; Owens, P.N. Sediments in urban river basins: A review of sediment-contaminant dynamics in an environmental system conditioned by human activities. J. Soils Sediments 2009, 9, 281–303. [Google Scholar] [CrossRef]
- Pizzuto, J.; Schenk, E.R.; Hupp, C.R.; Gellis, A.; Noe, G.; Williamson, E.; Karwan, D.L.; O’Neal, M.; Marquard, J.; Aalto, R.; et al. Characteristic length scales and time-averaged transport velocities of suspended sediment in the mid-Atlantic Region, USA. Water Resour. Res. 2014, 50, 790–805. [Google Scholar] [CrossRef]
- Nelson, E.J.; Booth, D.B. Sediment sources in an urbanizing, mixed land-use watershed. J. Hydrol. 2002, 264, 51–68. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Smith, D.J. Turbidity, suspended sediment, and water clarity: A review. J. Am. Water Resour. Assoc. 2001, 37, 1084–1101. [Google Scholar] [CrossRef]
- Underwood, J.; Renshaw, C.E.; Magilligan, F.; Dade, W.B.; Landis, J.W. Joint isotopic mass balance: A novel approach to quantifying channel bed to channel margins sediment transfer during storm events. Earth Surf. Process. Landf. 2015, 40, 1563–1573. [Google Scholar] [CrossRef]
- Hupp, C.; Noe, G.; Schenk, E.R.; Benthem, A.J. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream. Geomorphology 2013, 180–181, 156–169. [Google Scholar] [CrossRef]
- Schenk, E.R.; Hupp, C.; Gellis, A.; Noe, G. Developing a new stream metric for comparing stream function using a bank–floodplain sediment budget: A case study of three Piedmont streams. Earth Surf. Process. Landf. 2013, 38, 441–784. [Google Scholar] [CrossRef]
- Gao, P. Understanding watershed suspended sediment transport. Prog. Phys. Geogr. 2008, 32, 243–263. [Google Scholar] [CrossRef]
- Wass, P.D.; Leeks, G.J.L. Suspended sediment fluxes in the Humber Catchment, UK. Hydrol. Process. 1999, 13, 935–953. [Google Scholar] [CrossRef]
- Schwartz, J.S.; Dahle, M.; Robinson, R.B. Concentration-frequency-duration curves for stream turbidity: Possibilities for use assessing biological impairment. J. Am. Water Resour. Assoc. 2008, 44, 879–886. [Google Scholar] [CrossRef]
- Skarbøvik, E.; Roseth, R. Use of sensor data for turbidity, pH and conductivity as an alternative to conventional water quality monitoring in four Norwegian case studies. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65, 63–73. [Google Scholar] [CrossRef]
- Minella, J.P.G.; Merten, G.H.; Reichert, J.M.; Clarke, R.T. Estimating suspended sediment concentrations from turbidity measurements and the calibration problem. Hydrol. Process. 2008, 22, 1819–1830. [Google Scholar] [CrossRef]
- Schilling, K.E.; Isenhart, T.M.; Palmer, J.A.; Wolter, C.F.; Spooner, J. Impacts of land-cover change on suspended sediment transport in two agricultural watersheds. J. Am. Water Resour. Assoc. 2011, 47, 672–686. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pysek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management. J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Warren, R.J.; Potts, D.L.; Frothingham, K.M. Stream structural limitations on invasive communities in urban riparian areas. Invasive Plant Sci. Manag. 2015, 8, 353–362. [Google Scholar] [CrossRef]
- Merchant, C. American Environmental History: An Introduction; Columbia University Press: New York, NY, USA, 2007. [Google Scholar]
- Simon, A.; Collison, A.J.C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Landf. 2002, 37, 527–546. [Google Scholar] [CrossRef]
- Gurnell, A.M. Plants as river system engineers. Earth Surf. Process. Landf. 2014, 39, 4–25. [Google Scholar] [CrossRef]
- Smith, D.G. Effect of vegetation on lateral migration of anastomosed channels of a glacier meltwater river. Geol. Soc. Am. Bull. 1976, 87, 857–860. [Google Scholar] [CrossRef]
- Allmendinger, N.E.; Pizzuto, J.E.; Potter, N.J.; Johnson, T.E.; Hession, W.C. The influence of riparian vegetation on stream width, Eastern Pennsylvania, USA. Geol. Soc. Am. Bull. 2005, 117, 229–243. [Google Scholar] [CrossRef]
- Van Oorschot, M.; Kleinhans, M.; Geerling, G.; Middelkoop, H. Distinct patterns of interaction between vegetation and morphodynamics. Earth Surf. Process. Landf. 2016, 41. [Google Scholar] [CrossRef]
- Konsoer, K.M.; Rhoads, B.L.; Langendoen, E.J.; Best, J.L.; Ursic, M.E.; Abad, J.D.; Garcia, M.H. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 2016, 252, 80–87. [Google Scholar] [CrossRef]
- Tickner, D.P.; Angold, P.G.; Gurnell, A.M.; Mountford, J.O. Riparian plant invasions: Hydrogeomorphical control and ecological impacts. Prog. Phys. Geogr. 2001, 25, 22–52. [Google Scholar] [CrossRef]
- Mummigatti, K. The Effects of Japanese Knotweed (Reynoutria japonica) on Riparian Lands in Otsego County, New York; Report of the Biological Field Station; State University of New York, College of Oneonta: Cooperstown, New York, NY, USA, 2001; pp. 111–119. [Google Scholar]
- Pysek, P.; Prach, K. Plant invasions and the role of riparian habitats: A comparison of four species alien to central Europe. J. Biogeogr. 1993, 20, 413–420. [Google Scholar] [CrossRef]
- Lecerf, A.; Patfield, D.; Boiche, A.; Riipinen, M.P.; Chauvet, E.; Dobson, M. Stream ecosystems respond to riparian invasion by Japanese Knotweed (Fallopia japonica). Can. J. Fish. Aquat. Sci. 2007, 64, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Beerling, D.J. The effect of Riparian land use on the occurrence and abundance of Japanese knotweed Reynoutria japonica on selected rivers in South Wales. Biol. Conserv. 1991, 55, 329–337. [Google Scholar] [CrossRef]
- Maskell, L.C.; Bullock, J.M.; Smart, S.M.; Thompson, K.; Hulme, P.E. The distribution and habitat associations of non-native plant species in urban riparian habitats. J. Veg. Sci. 2006, 17, 499–508. [Google Scholar] [CrossRef]
- Borton-Lawson Engineering Inc. Tookany/Tacony-Frankford Watershed Act 167: Stormwater Management Plan, Volume 1—Executive Summary; Philadelphia Water Department: Philadelphia, PA, USA, 2008; pp. 1–250. [Google Scholar]
- Arnold, E.G. Evaluation of Urban Riparian Buffers on Stream Health in the Tookany Watershed, PA. Master’s Thesis, Temple University, Philadelphia, PA, USA, 2016. Available online: http://digital.library.temple.edu/cdm/ref/collection/p245801coll10/id/405730) (accessed on 13 April 2018).
- Rügner, H.; Schwientek, M.; Beckingham, B.; Kuch, B.; Grathwohl, P. Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environ. Earth Sci. 2013, 69, 373–380. [Google Scholar] [CrossRef]
- Gippel, C.J. Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrol. Process. 1995, 9, 83–97. [Google Scholar] [CrossRef]
- Bunte, K.; Abt, S.R. Sample Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring; General Technical Report. RMRS-GTR-74; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; p. 428. [Google Scholar]
- Polyakov, V.; Fares, A.; Ryder, M. Precision riparian buffers for the control of nonpoint source pollutant loading into surface water: A review. Environ. Rev. 2005, 13, 129–144. [Google Scholar] [CrossRef]
- Lawler, D.M.; Petts, G.E.; Foster, I.D.L.; Harper, S. Turbidity dynamics during spring storm events in an urban headwater river system: The upper Tame, West Midlands, UK. Sci. Total Environ. 2006, 360, 109–126. [Google Scholar] [CrossRef] [PubMed]
Scale | Description |
---|---|
S | Sand, loose sediment |
0 | Completely loose |
1 | Dislodges easily |
2 | Dislodges with little resistance |
3 | Dislodges with some difficulty |
4 | Can move around but cannot dislodge |
5 | Not removable, no movement |
Logger | Connectivity | D:R | Vegetation | Grain Size | Geomorph | Embeddedness |
---|---|---|---|---|---|---|
CH 0 | Connected | 0.3 | Trees | Gravel | Run | Loose 79% |
CH 1 | Highly Disconn | 0.8 | Knotweed | Gravel | Riffle | Loose 92% |
CH 2 | Highly Disconn | 0.7 | Knotweed | Gravel | Pool | Loose 100% |
CH 3 | Disconnected | Trees | Run | |||
MR 0 | Connected | 0.2 | Knotweed | Gravel | Riffle | Loose 76% |
MR 1 | Connected | 0.2 | Knotweed | Gravel | Run | Loose 98% |
MR 2 | Disconnected | 0.2 | Trees | Sand | Pool | Loose 100% |
MR 3 | Disconnected | 0.4 | Trees | Sandy gravel | Pool | Loose 99% |
Logger | R2 |
---|---|
CH 0 | 0.60 |
CH 1 | 0.84 |
CH 2 | 0.77 |
CH 3 | 0.59 |
MR 0 | 0.73 |
MR 1 | 0.76 |
MR 2 | 0.25 |
MR 3 | 0.75 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnold, E.; Toran, L. Effects of Bank Vegetation and Incision on Erosion Rates in an Urban Stream. Water 2018, 10, 482. https://doi.org/10.3390/w10040482
Arnold E, Toran L. Effects of Bank Vegetation and Incision on Erosion Rates in an Urban Stream. Water. 2018; 10(4):482. https://doi.org/10.3390/w10040482
Chicago/Turabian StyleArnold, Emily, and Laura Toran. 2018. "Effects of Bank Vegetation and Incision on Erosion Rates in an Urban Stream" Water 10, no. 4: 482. https://doi.org/10.3390/w10040482
APA StyleArnold, E., & Toran, L. (2018). Effects of Bank Vegetation and Incision on Erosion Rates in an Urban Stream. Water, 10(4), 482. https://doi.org/10.3390/w10040482