An Integrated Method for Accounting for Water Environmental Capacity of the River–Reservoir Combination System
Abstract
:1. Introduction
2. Study Area
2.1. Study Area
2.2. Water Quality Assessment in the Huangshi Reservoir Basin
3. Methods
3.1. Water Environmental Capacity of the River-Reservoir Combination System
3.2. Water Environmental Capacity Model of the Tributaries
3.3. Water Environmental Capacity Model of the Huangshi Reservoir
3.3.1. Hydrological Parameters
3.3.2. Boundary Conditions
3.3.3. Parameters of Model
3.3.4. Model Verification
4. Results
4.1. Water Quality Simulation and Prediction
4.2. Water Environmental Capacity of the River–Reservoir Combination System
4.3. Total Amount of Pollutant Control Goal Based on the Water Environmental Capacity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, W.; Chen, W.; Hsu, M.H. Using a three-dimensional particle tracking model to estimate the residence time and age of water in a tidal estuary. Comput. Geosci. 2011, 37, 1148–1161. [Google Scholar] [CrossRef]
- Su, Q.; Qin, H.; Fu, G. Environmental and ecological impacts of water supplement schemes in a heavily polluted estuary. Sci. Total Environ. 2014, 472, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, J.; Zheng, B.; Zhen, H.; Feng, Y.; Wang, Z.; Yang, X. Modeling study of residence time and water age in Dahuofang Reservoir in China. Sci. China Phys. Mech. Astron. 2011, 54, 127–142. [Google Scholar] [CrossRef]
- Zhang, Y. The Development of Basic Concept of Water Environmental Capacity. Res. Environ. Sci. 1992, 5, 59–61. (In Chinese) [Google Scholar]
- Yang, Z.; Cheng, C.; Tan, X.; Cheng, R.; Zhong, M.A. Analysis of water environmental capacity of Guanting Reservoir and its upstream basin. J. Arid N.A. Res. Environ. 2015, 29, 164–166. (In Chinese) [Google Scholar]
- Gao, G.Q. Water environmental carrying capacity calculation and protection measures on Hefang Reservoir. Appl. Mech. Mater. 2011, 1446, 2537–2540. [Google Scholar] [CrossRef]
- Han, L.X.; Yan, F.F.; Peng, H.; Gao, J.J.; Pan, M.M. Methods for calculation of water environment capacity of small and medium river channels. Adv. Mater. Res. 2013, 2115, 2745–2750. [Google Scholar] [CrossRef]
- Gang, Z.; Kun, L.; Guo, F.U.; Guang-Jun, M. Calculation method of river water environmental capacity. J. Hydraul. Eng. ACSE 2014, 45, 227–234. [Google Scholar]
- Li, Y.; Zhao, L.; Li, Y. Index system of water environment capacity promotion in Jilin province in China through ways of structure, engineering and supervision. Adv. Mater. Res. 2015, 3848, 1155–1159. [Google Scholar] [CrossRef]
- Yang, J.F.; Lei, K.; Khu, S.; Meng, W.; Qiao, F. Assessment of water environmental carrying capacity for sustainable development using a coupled system dynamics approach applied to the Tieling of the Liao River Basin, China. Environ. Earth Sci. 2015, 73, 5173–5183. [Google Scholar] [CrossRef]
- Li, K.; Zhang, L.; Li, Y.; Zhang, L.J.; Wang, X.L. A three-dimensional water quality model to evaluate the environmental capacity of nitrogen and phosphorus in Jiaozhou Bay, China. Mar. Pollut. Bull. 2015, 91, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Chen, Y.X.; Zhao, X.L.; Yang, L.B.; Lei, K.; Zhou, G. Analysis of seasonality difference on water environmental capacity of Ashi River based on EFDC. Environ. Eng. 2017, 35, 66–68. (In Chinese) [Google Scholar]
- Zhou, X.Y.; Lei, K.; Meng, W.; Khu, S.; Zhao, J.; Wang, M.N.; Yang, J.F. Space–time approach to water environment carrying capacity calculation. J. Clean. Prod. 2017, 149, 302–312. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.X. A water environmental capacity calculation method of the shallow lake based on water quality response coefficient. Sichuan Environ. 2017, 36, 47–49. (In Chinese) [Google Scholar]
- Wu, J.F.; Gao, Y.; Xie, F.; Chen, L.N. Research on water environment capacity by two-dimensional hydrodynamic and quality model. Environ. Sci. Manag. 2017, 42, 53–55. (In Chinese) [Google Scholar]
- Gu, J.; Li, Z.Y.; Mao, X.D.; Hu, C.F.; Kuang, C.P.; Zhang, W.L. Study of cod environmental capacity in coastal waters of Beidaihe in summer. Mar. Environ. Sci. 2017, 36, 683–685. (In Chinese) [Google Scholar]
- Wu, H.; Yang, X. Calculation of water environmental capacity based on control unit of Shuangtaizi River. Environ. Sci. Manag. 2017, 42, 61–63. (In Chinese) [Google Scholar]
- Chinh, L.V.; Hiramatsu, K.; Harada, M.; Lan, T.T. Estimation of water environment capacity in the cau river basin, vietnam using the streeter-phelps model. J.- Fac. Agric. Kyushu Univ. 2017, 62, 163–169. [Google Scholar]
- Huang, S.L.; Zhang, Y.; Li, Q.; Xu, D.S. Research on water environmental capacity of urban river: A case study of Tuohe River in Suzhou city, northern Anhui province. Adv. Mater. Res. 2012, 1479, 867–870. [Google Scholar] [CrossRef]
- Fan, L.L.; Sha, H.F.; Pang, Y. Water environmental capacity of Lake Taihu. J. Lake Sci. 2012, 24, 693–697. [Google Scholar]
- Xia, Y.; Ma, C.M.; Liu, X.J.; Liu, X.Y.; Deng, Q.L. Comprehensive carrying capacity assessment of water environment in Zhengzhou city. Appl. Mech. Mater. 2013, 2574, 390–395. [Google Scholar] [CrossRef]
- Yan, B.Y.; Xing, J.S.; Tan, H.R.; Deng, S.P.; Tan, Y.N. Analysis on water environment capacity of the Poyang Lake. Procedia Environ. Sci. 2011, 10, 2754–2759. [Google Scholar]
- Liu, Q.; Jiang, J.; Jing, C.; Qi, J. Spatial and seasonal dynamics of water environmental capacity in mountainous rivers of the Southeastern Coast, China. Int. J. Environ. Res. Public Health 2018, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Missaghi, S.; Hondzo, M. Evaluation and application of a three-dimensional water quality model in a shallow lake with complex morphometry. Ecol. Model. 2010, 221, 1512–1525. [Google Scholar] [CrossRef]
- Missaghi, S.; Hondzo, M.; Melching, C. Three-dimensional lake water quality modeling: Sensitivity and uncertainty analyses. J. Environ. Qual. 2013, 42, 1684–1698. [Google Scholar] [CrossRef] [PubMed]
- Missaghi, S. Three Dimensional Water Quality Modeling in a Shallow Lake with Complex Morphometry; Implications for Cool Water Fish Habitat under Changing Climate. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, July 2014. [Google Scholar]
- Heung, W.; Hu, B.Q. Application of interval clustering approach to water quality evaluation. J. Hydrol. 2013, 491, 1–12. [Google Scholar]
- Heung, W.; Hu, B.Q. Application of improved extension evaluation method to water quality evaluation. J. Hydrol. 2014, 509, 539–548. [Google Scholar]
- Peche, R.; Esther, R.E. Development of environmental quality indexes based on fuzzy logic. A case study. Ecol. Indic. 2012, 23, 555–565. [Google Scholar] [CrossRef]
- Ju, H.C.; Yoo, S.H. Using the fuzzy set theory to developing an environmental impact assessment index for a thermal power plant. Qual. Quant. 2014, 48, 673–680. [Google Scholar] [CrossRef]
- Chen, Q.W.; Wu, W.Q.; Blanckaert, K.; Ma, J.F.; Huang, G.X. Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses. J. Environ. Manag. 2012, 110, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Jordan, T.E.; Weller, D.E.; Correll, D.L. Sources of nutrient inputs to the Patuxent River estuary. Estuaries 2003, 26, 226–243. [Google Scholar] [CrossRef]
- Shen, J.; Haas, L. Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuarine Coast. Shelf Sci. 2004, 61, 449–461. [Google Scholar] [CrossRef]
- Li, Y.; Acharya, K.; Yu, Z. Modeling impacts of Yangtze River water transfer on water ages in Lake Taihu, China. Ecol. Eng. 2011, 37, 325–334. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the people’s Republic of China. The surface water environmental quality standard of China. GB3838-2002.
- Chen, L.B.; Yang, Z.F.; Liu, H.F. Numerical simulations of spread characteristics of toxic cyanide in the Danjiangkou Reservoir in China under the effects of dam cooperation. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef]
- Hzamrick, H.M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects; The College of William and Mary, Virginia Institute of Marine Science: Williamsburg, VA, USA, 1992. [Google Scholar]
- Caliskan, A.; Elci, S. Effects of selective withdrawal on hydrodynamics of a stratified reservoir. Water Resour. Manag. 2009, 23, 1257–1273. [Google Scholar] [CrossRef]
- Wang, C.; Shen, C.; Wang, P.F.; Qian, J.; Hou, J.; Liu, J.J. Modeling of sediment and heavy metal transport in Taihu Lake, China. J. Hydrodyn. Ser. B 2013, 25, 379–387. [Google Scholar] [CrossRef]
- Zhang, C.X.; You, X.Y.; Zhao, S.M. Application of the EFDC model to waterfront planning: A case study in the Tianjin Harbor Economic Zone, China. Eng. Appl. Comp. Fluid Mech. 2014, 8, 1–13. [Google Scholar] [CrossRef]
- Park, K.; Kuo, A.Y. A Three-Dimensional Hydrodynamic Eutrophication Model: Description of Water Quality and Sediment Process Sub-Models; The College of William and Mary, Virginia Institute of Marine Science: Williamsburg, VA, USA, 1995. [Google Scholar]
Rivers | Control Area (km2) | Length of Reaches (km) | Water Quality Objectives (River Water Quality Standards) * | Flow (m3/s) |
---|---|---|---|---|
Bamao River | 102.9 | 10 | II | 1.429 |
Longtan River | 154.4 | 14.2 | II | 1.2769 |
Fanjiafang River | 61.2 | 4 | II | 0.6726 |
Dongtan River | 40.3 | 5.8 | II | 0.4089 |
Indicators | II | III | IV | V |
---|---|---|---|---|
COD | 15 | 20 | 30 | 40 |
NH3-N | 0.5 | 1 | 1.5 | 2 |
TP | 0.1 (lake and reservoir 0.025) | 0.2 (lake and reservoir 0.05) | 0.3 (lake and reservoir 0.1) | 0.4 (lake and reservoir 0.2) |
TN | 0.5 | 1 | 1.5 | 2 |
Sections | Standard | Water Quality | Exceed Factors and Multiples * |
---|---|---|---|
HS7 | II | III | TN (0.92) |
HS8 | II | V | TN (3.96) |
HS9 | II | IV | TN (1.32) |
HS16 | II | IV | TN (1.18), TP (0.88) |
HS17 | II | IV | TN (1.70) |
HS19 | II | IV | TN (0.28), TP (2.36) |
HS3 | II | V | TN (2.86), TP (0.04) |
HS6 | II | IV | TN (0.88) |
HS10 | II | V | TN (2.38) |
HS12 | II | V | TN (2.06), TP (0.76) |
HS14 | II | IV | TN (1.54), TP (0.48) |
HS15 | II | V | TN (1.46), TP (4.68) |
HS22 | II | IV | TN (1.42), TP (0.92) |
HS23 | II | IV | TN (1.08), TP (0.08) |
Tributaries | Sections | Standard | Water Quality | Exceed Factors and Multiples * |
---|---|---|---|---|
Bamao River | HS1 | III | V | TN (0.90) |
HS2 | IV | TN (0.49) | ||
Longtan River | HS4 | V | TN (0.90) | |
HS5 | V | TN (0.88), TP (1.54) | ||
Fanjiafang River | HS11 | V | TN (0.70) | |
HS13 | V | TN (0.71), TP (0.60) | ||
Liujiaxi River | HS18 | V | TN (0.86) | |
Dongtan River | HS20 | V | TN (0.79) | |
HS21 | V | TN (0.53) |
Parameters | Roughness | Eddy Viscosity Coefficient | Diffusion Coefficient | COD | NH3-N | TN | TP |
---|---|---|---|---|---|---|---|
Coefficient/Degradation coefficient | 0.02 m | 1 m2/s | 0.2 | 0.03/day | 0.03/day | 0.03/day | 0.01/day |
Characteristic Values | COD | NH3-N | TN | TP |
---|---|---|---|---|
Compare numbers | 12 | 12 | 12 | 12 |
Average observed | 7.78 | 0.12 | 1.20 | 0.15 |
Average simulated | 6.92 | 0.10 | 1.15 | 0.10 |
Average Error | −0.85 | 0.01 | −0.04 | 0.02 |
Relative Error | 20.29 | 28.10 | 12.99 | 157.42 |
Absolute Error | 1.68 | 0.02 | 0.14 | 0.03 |
Root Mean Square Error | 2.18 | 0.03 | 0.18 | 0.03 |
Relative Root Mean Square Error | 47.28 | 70.38 | 61.56 | 139.98 |
Nash-Sutcliffe coefficient | −2.05 | −11.89 | −4.05 | −50.35 |
Area | COD | NH3-N | TN | TP |
---|---|---|---|---|
Inflow | Inflow | Inflow | Inflow | |
Bamao River | 148.66 | 17.96 | 27.04 | 4.859 |
Longtan River | 108.67 | 13.87 | 19.65 | 2.678 |
Fanjiafang River | 116.8 | 14.6 | 21.36 | 3.34 |
Dongtan River | 89.292 | 12.23 | 16.23 | 1.573 |
Reservoir region | 197.64 | 97.54 | 179.03 | 44.375 |
Total amount | 661.062 | 156.2 | 263.31 | 56.825 |
Year | Pollutants | Bamao River | Longtan River | Fanjiafang River | Dongtan River |
---|---|---|---|---|---|
2020 | COD | 764.73 | 482.54 | 428.13 | 239.27 |
NH3-N | 70.56 | 45.65 | 39.14 | 22.43 | |
TN | 136.2 | 86.16 | 75.46 | 41.72 | |
TP | 59.98 | 38.576 | 32.24 | 16.446 | |
2025 | COD | 981.21 | 604.68 | 549.45 | 298.1 |
NH3-N | 86.48 | 54.60 | 48.21 | 27.08 | |
TN | 172.16 | 106.32 | 95.67 | 51.42 | |
TP | 72.42 | 44.424 | 39.21 | 19.544 |
Year | Pollutants | Bamao River | Longtan River | Fanjiafang River | Dongtan River |
---|---|---|---|---|---|
2020 | COD | 16.97 | 11.98 | 20.18 | 18.55 |
NH3-N | 1.57 | 1.13 | 1.85 | 1.74 | |
TN | 3.02 | 2.14 | 3.56 | 3.24 | |
TP | 1.33 | 0.96 | 1.52 | 1.28 | |
2025 | COD | 21.77 | 15.02 | 25.90 | 23.12 |
NH3-N | 1.92 | 1.36 | 2.27 | 2.10 | |
TN | 3.82 | 2.64 | 4.51 | 3.99 | |
TP | 1.61 | 1.10 | 1.85 | 1.52 |
Sections | Water Quality Target | Water Environmental Capacity | |||
---|---|---|---|---|---|
COD | NH3-N | TN | TP | ||
Bamao River | II | 185.46 | 15.37 | 13.57 | 3.60 |
Longtan River | II | 131.32 | 13.87 | 12.11 | 3.22 |
Fanjiafang River | II | 58.56 | 7.33 | 6.38 | 1.69 |
Dongtan River | II | 46.63 | 4.42 | 3.88 | 1.03 |
Sum of rivers | 421.97 | 40.99 | 35.94 | 9.54 | |
Reservoir region (inner part) | II | 4850 | 200 | 160 | 38 |
Total amount | 5271.97 | 240.99 | 195.94 | 47.54 |
Area | COD | NH3-N | TN | TP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inflow | Capacity | Utilization Ratio (%) | Inflow | Capacity | Utilization Ratio (%) | Inflow | Capacity | Utilization Ratio (%) | Inflow | Capacity | Utilization Ratio (%) | |
Bamao River | 148.66 | 185.46 | 80 | 17.96 | 15.37 | 117 | 27.04 | 13.57 | 199 | 4.859 | 3.6 | 135 |
Longtan River | 108.67 | 131.32 | 83 | 13.87 | 13.87 | 100 | 19.65 | 12.11 | 162 | 2.678 | 3.22 | 83 |
Fanjiafang River | 116.8 | 58.56 | 199 | 14.6 | 7.33 | 199 | 21.36 | 6.38 | 335 | 3.34 | 1.69 | 198 |
Dongtan River | 89.292 | 46.63 | 191 | 12.23 | 4.42 | 277 | 16.23 | 3.88 | 418 | 1.573 | 1.03 | 153 |
Reservoir region | 197.64 | 4850 | 4 | 97.54 | 200 | 49 | 179.03 | 160 | 112 | 44.375 | 38 | 117 |
Total amount | 661.062 | 5271.97 | 13 | 156.2 | 240.99 | 65 | 263.31 | 195.94 | 134 | 56.825 | 47.54 | 120 |
Area | COD | NH3-N | TN | TP |
---|---|---|---|---|
Reductions | Reductions | Reductions | Reductions | |
Bamao River | 10.39 | 6.59 | 20.93 | 3.358 |
Longtan River | 7.18 | 2.73 | 12.16 | 0.457 |
Fanjiafang River | 92.74 | 9.89 | 20.55 | 3.062 |
Dongtan River | 63.55 | 9.93 | 15.61 | 1.055 |
Reservoir region | −4560.48 * | −58.02 * | 84.81 | 23.233 |
Total amount | −4386.62 | −28.88 | 154.06 | 31.165 |
Area | COD | NH3-N | TN | TP |
---|---|---|---|---|
Reductions | Reductions | Reductions | Reductions | |
Bamao River | 86.64 | 13.78 | 33.19 | 6.17 |
Longtan River | 61.22 | 8.19 | 20.68 | 1.898 |
Fanjiafang River | 150.44 | 16.06 | 29.96 | 4.961 |
Dongtan River | 103.48 | 14.23 | 21.89 | 1.827 |
Reservoir region | −4445.73 * | −2.79 * | 175.45 | 44.122 |
Total amount | −4043.95 | 49.47 | 281.17 | 58.978 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Li, C.; Chen, L.; Zhang, Y. An Integrated Method for Accounting for Water Environmental Capacity of the River–Reservoir Combination System. Water 2018, 10, 483. https://doi.org/10.3390/w10040483
Zhao F, Li C, Chen L, Zhang Y. An Integrated Method for Accounting for Water Environmental Capacity of the River–Reservoir Combination System. Water. 2018; 10(4):483. https://doi.org/10.3390/w10040483
Chicago/Turabian StyleZhao, Fen, Chunhui Li, Libin Chen, and Yuan Zhang. 2018. "An Integrated Method for Accounting for Water Environmental Capacity of the River–Reservoir Combination System" Water 10, no. 4: 483. https://doi.org/10.3390/w10040483
APA StyleZhao, F., Li, C., Chen, L., & Zhang, Y. (2018). An Integrated Method for Accounting for Water Environmental Capacity of the River–Reservoir Combination System. Water, 10(4), 483. https://doi.org/10.3390/w10040483