Analysis of Anthropogenic, Climatological, and Morphological Influences on Dissolved Organic Matter in Rocky Mountain Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region of Interest
2.2. Dissolved Organic Matter Data
2.3. Potential Predictors from Datasets and Products
3. Water Quality Model
4. Results and Discussion
4.1. Discussion of Static Significant Predictors
4.2. Discussion of Dynamic Significant Predictors
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix A.1. Fires
Appendix A.2. Mountain Pine Beetle
Appendix A.3. Topography
Appendix A.4. Soil Types
- Group A includes pervious soils, with high infiltration rates and low runoff potential, and therefore a high transmissivity. These soils include drained sands, drained gravels, loamy sands, and sandy loams.
- Group B includes soils with moderate infiltration rates. These soils include moderately drained materials with textures that are not extremely fine or coarse.
- Group C includes soils with low infiltration rates with a moderately fine texture. These soils are mainly sandy clay loams.
- Group D includes highly impervious soils with high runoff potential, and therefore a low transmissivity. These soils are typically located in regions with high water tables or shallow impervious materials and include clay loams, silty clay loams, sandy clays, silty clays, and clays.
Appendix A.5. Precipitation, Temperature, and Snow Cover
Appendix A.6. Land Cover
Appendix A.7. Wastewater Point Sources
Appendix B
Appendix C
References
- Golubiewski, N.E. Urbanization Increases Grassland Carbon Pools: Effects of Landscaping in Colorado’s Front Range. Ecol. Appl. 2006, 16, 555–571. [Google Scholar] [CrossRef]
- Manfredo, M.J.; Zinn, H.C. Population change and its implications for wildlife management in the New West: A case study of Colorado. Hum. Dimens. Wildl. 1996, 1, 62–74. [Google Scholar] [CrossRef]
- Pepin, N.; Losleben, M. Climate change in the Colorado Rocky Mountains: Free air versus surface temperature trends. Int. J. Climatol. 2002, 22, 311–329. [Google Scholar] [CrossRef]
- Riebsame, W.E.; Gosnell, H.; Theobald, D.M. Land Use and Landscape Change in the Colorado Mountains I: Theory, Scale, and Pattern. Mt. Res. Dev. 1996, 16, 395–405. [Google Scholar] [CrossRef]
- Smutny, G. Legislative Support for Growth Management in the Rocky Mountains: An Exploration of Attitudes in Idaho. J. Am. Plan. Assoc. 1998, 64, 311–323. [Google Scholar] [CrossRef]
- Mikkelson, K.M.; Maxwell, R.M.; Ferguson, I.; Stednick, J.D.; McCray, J.E.; Sharp, J.O. Mountain pine beetle infestation impacts: Modeling water and energy budgets at the hill-slope scale. Ecohydrology 2013, 6, 64–72. [Google Scholar] [CrossRef]
- Moore, M.L.; Six, D.L. Effects of Temperature on Growth, Sporulation, and Competition of Mountain Pine Beetle Fungal Symbionts. Microb. Ecol. 2015, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Negron, J.F.; Fettig, C.J. Mountain pine beetle, a major disturbance agent in US Western coniferous forests: A synthesis of the state of knowledge [Research In Review]. J. For. 2014, 112, 257. [Google Scholar] [CrossRef]
- Zhang, Z. A review of the Effects of Climate and Weather on Mountain Pine Beetle Population Dynamics and Impacts of Climate Change on Range Expansion in Canada. Bachelor’s Thesis, University of Vancouver, Vancouver, BC, Canada, 2014. [Google Scholar]
- Helie, J.F.; Peters, D.L.; Tattrie, K.R.; Gibson, J.J. Review and Synthesis of Potential Hydrologic Impacts of Mountain Pine Beetle and Related Harvesting Activities in British Columbia; Natural Resources Canada: Victoria, BC, Canada, 2005.
- Pfeifer, E.M.; Hicke, J.A.; Meddens, A.J.H. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Glob. Chang. Biol. 2011, 17, 339–350. [Google Scholar] [CrossRef]
- Liang, L.; Hawbaker, T.J.; Chen, Y.; Zhu, Z.; Gong, P. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains. Appl. Geogr. 2014, 55, 165–175. [Google Scholar] [CrossRef]
- Bearup, L.A.; Mikkelson, K.M.; Wiley, J.F.; Navarre-Sitchler, A.K.; Maxwell, R.M.; Sharp, J.O.; McCray, J.E. Metal fate and partitioning in soils under bark beetle-killed trees. Sci. Total Environ. 2014, 496, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Biederman, J.A.; Harpold, A.A.; Gochis, D.J.; Ewers, B.E.; Reed, D.E.; Papuga, S.A.; Brooks, P.D. Increased evaporation following widespread tree mortality limits streamflow response. Water Resour. Res. 2014, 50, 5395–5409. [Google Scholar] [CrossRef]
- Norton, U.; Ewers, B.E.; Borkhuu, B.; Brown, N.R.; Pendall, E. Soil Nitrogen Five Years after Bark Beetle Infestation in Lodgepole Pine Forests. Soil Sci. Soc. Am. J. 2015, 79, 282–293. [Google Scholar] [CrossRef]
- Winkler, R.; Boon, S.; Zimonick, B.; Baleshta, K. Assessing the effects of post-pine beetle forest litter on snow albedo. Hydrol. Process. 2010, 24, 803–812. [Google Scholar] [CrossRef]
- Clow, D.W.; Rhoades, C.; Briggs, J.; Caldwell, M.; Lewis, W.M., Jr. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA. Appl. Geochem. 2011, 26, S174–S178. [Google Scholar] [CrossRef]
- Mikkelson, K.M.; Bearup, L.A.; Maxwell, R.M.; Stednick, J.D.; McCray, J.E.; Sharp, J.O. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 2013, 115, 1–21. [Google Scholar] [CrossRef]
- Trahan, N.A.; Dynes, E.L.; Pugh, E.; Moore, D.J.P.; Monson, R.K. Changes in soil biogeochemistry following disturbance by girdling and mountain pine beetles in subalpine forests. Oecologia 2015, 177, 981–995. [Google Scholar] [CrossRef] [PubMed]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Boyer, E.W.; Hornberger, G.M.; Bencala, K.E.; McKnight, D. Overview of a simple model describing variation of dissolved organic carbon in an upland catchment. Ecol. Model. 1996, 86, 183–188. [Google Scholar] [CrossRef]
- Wu, F.C.; Kothawala, D.N.; Evans, R.D.; Dillon, P.J.; Cai, Y.R. Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream. Appl. Geochem. 2007, 22, 1659–1667. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Aiken, G.R.; Hsu-Kim, H.; Ryan, J.N. Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids. Environ. Sci. Technol. 2011, 45, 3196–3201. [Google Scholar] [CrossRef] [PubMed]
- Beggs, K.M.H.; Summers, R.S. Character and Chlorine Reactivity of Dissolved Organic Matter from a Mountain Pine Beetle Impacted Watershed. Environ. Sci. Technol. 2011, 45, 5717–5724. [Google Scholar] [CrossRef] [PubMed]
- Cory, R.M.; Miller, M.P.; McKnight, D.M.; Guerard, J.J.; Miller, P.L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Methods 2010, 8, 67–78. [Google Scholar] [CrossRef]
- Mikkelson, K.M.; Dickenson, E.R.V.; Maxwell, R.M.; McCray, J.E.; Sharp, J.O. Water-quality impacts from climate-induced forest die-off. Nat. Clim. Chang. 2013, 3, 218–222. [Google Scholar] [CrossRef]
- Hart, S.J.; Schoennagel, T.; Veblen, T.T.; Chapman, T.B. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. Proc. Natl. Acad. Sci. USA 2015, 112, 4375–4380. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.J.; Donato, D.C.; Turner, M.G. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Proc. Natl. Acad. Sci. USA 2014, 111, 15120–15125. [Google Scholar] [CrossRef] [PubMed]
- Wooten, G. Relationships between Bark Beetle Outbreaks and Subsequent Fire Severity in the 2006 Tripod Fire. Available online: http://www.okanogan1.com/ecology/webfire/research/Wooten-tripod-fire-bark-beetles-2014-10-01.pdf (accessed on 15 April 2018).
- Beudert, B.; Bässler, C.; Thorn, S.; Noss, R.; Schröder, B.; Dieffenbach-Fries, H.; Foullois, N.; Müller, J. Bark Beetles Increase Biodiversity While Maintaining Drinking Water Quality. Conserv. Lett. 2015. [Google Scholar] [CrossRef]
- Bentz, B.J.; Régnière, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L.; Hicke, J.A.; Kelsey, R.G.; Negrón, J.F.; Seybold, S.J. Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects. BioScience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Finko, M.; Quayle, B.; Zhang, Y.; Lecker, J.; Megown, K.A.; Brewer, C.K. Monitoring Trends and Burn Severity (MTBS): Monitoring wildfire activity for the past quarter century using landsat data. In Moving from Status to Trends: Forest Inventory and Analysis (FIA) Symposium; Morin, R.S., Liknes, G.C., Eds.; U.S. Department of Agriculture, Forest Service, Northern Research Station: Baltimore, MD, USA, 2012; pp. 222–228. [Google Scholar]
- Rodríguez-Jeangros, N.; Hering, A.S.; Kaiser, T.; McCray, J.E. SCaMF–RM: A Fused High-Resolution Land Cover Product of the Rocky Mountains. Remote Sens. 2017, 9, 1015. [Google Scholar] [CrossRef]
- Nagel, D.; Wollrab, S.; Parkes-Payne, S.; Peterson, E.; Isaak, D.; Ver Hoef, J. National Stream Internet Hydrography Datasets for Spatial-Stream-Network (SSN) Analysis; Rocky Mountain Research Station: Fort Collins, CO, USA, 2017. [Google Scholar]
- McKnight, D.M.; Bencala, K.E.; Zellweger, G.W.; Aiken, G.R.; Feder, G.L.; Thorn, K.A. Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado. Environ. Sci. Technol. 1992, 26, 1388–1396. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Water Data for the Nation: The National Water Information System. Available online: https://www.usgs.gov/water-data-nation-national-water-information-system (accessed on 15 April 2018).
- Brouillard, B.M.; Dickenson, E.R.V.; Mikkelson, K.M.; Sharp, J.O. Water quality following extensive beetle-induced tree mortality: Interplay of aromatic carbon loading, disinfection byproducts, and hydrologic drivers. Sci. Total Environ. 2016, 572, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Eidenshink, J.C.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S.M. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 321. [Google Scholar] [CrossRef]
- Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 2009, 113, 645–656. [Google Scholar] [CrossRef]
- USDA Forest Service. Rocky Mountain Region, Forest Health Management Annual Aerial Detection Overview Survey—Vector Digital Data of Forest Insect and Disease Conditions; USDA Forest Service: Washington, DC, USA, 1950.
- Wear, D.N.; Turner, M.G.; Naiman, R.J. Land Cover Along an Urban–Rural Gradient: Implications for Water Quality. Ecol. Appl. 1998, 8, 619–630. [Google Scholar] [CrossRef]
- Mitasova, H.; Hofierka, J.; Zlocha, M.; Iverson, L.R. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 1996, 10, 629–641. [Google Scholar] [CrossRef]
- Oates, P.M.; Shanahan, P.; Polz, M.F. Solar disinfection (SODIS): Simulation of solar radiation for global assessment and application for point-of-use water treatment in Haiti. Water Res. 2003, 37, 47–54. [Google Scholar] [CrossRef]
- Chapra, S.C. Reaction Kinetics. In Surface Water-Quality Modeling; Waveland Press: Long Grove, IL, USA, 2008; pp. 24–42. ISBN 978-1-4786-0830-1. [Google Scholar]
- Pratt, B.; Chang, H. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. J. Hazard. Mater. 2012, 209, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Cai, Q.; Liu, R.; Cao, M. The influence of topography and land use on water quality of Xiangxi River in Three Gorges Reservoir region. Environ. Geol. 2009, 58, 937–942. [Google Scholar] [CrossRef]
- Gesch, D.B.; Oimoen, M.J.; Greenlee, S.K.; Nelson, C.A.; Steuck, M.J.; Tyler, D.J. The national elevation data set. Photogramm. Eng. Remote Sens. 2002, 68, 5–31. [Google Scholar]
- U.S. Geological Survey. National Elevation Dataset (NED) 1/9 Arc-Second Downloadable Data Collection; U.S. Geological Survey: Reston, VA, USA, 2014.
- United States Department of Agriculture—Natural Resources Conservation Service Hydrologic Soil Groups. Hydrology National Engineering Handbook; United States Department of Agriculture—Natural Resources Conservation Service Hydrologic Soil Groups: Washington, DC, USA, 2017.
- Livneh, B.; Rosenberg, E.A.; Lin, C.; Nijssen, B.; Mishra, V.; Andreadis, K.M.; Maurer, E.P.; Lettenmaier, D.P. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions. J. Clim. 2013, 26, 9384–9392. [Google Scholar] [CrossRef]
- Livneh, B.; Bohn, T.J.; Pierce, D.W.; Munoz-Arriola, F.; Nijssen, B.; Vose, R.; Cayan, D.R.; Brekke, L. A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Sci. Data 2015, 2, 150042. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Jeangros, N.; Hering, A.S.; Kaiser, T.; McCray, J. Fusing multiple existing space-time land cover products. Environmetrics 2017, 28, e2429. [Google Scholar] [CrossRef]
- McGowan, S. Surface Wastewater Treatment Plant Locations in Colorado, United States; GIS Coordinator—Watershed Section; Colorado Department of Public Health and Environment-Water Quality Control Commission: Denver, CO, USA, 2017.
- Lohman, P. Surface Wastewater Treatment Plant Locations in Wyoming, United States; Southeast District Engineer; Wyoming Department of Environmental Quality-Water Quality Division: Cheyenne, WY, USA, 2017.
- Asadi, P.; Davison, A.C.; Engelke, S. Extremes on river networks. Ann. Appl. Stat. 2015, 9, 2023–2050. [Google Scholar] [CrossRef]
- Computational and Information Systems Laboratory Cheyenne: SGI ICE XA System (Climate Simulation Laboratory). Boulder CO Natl. Cent. Atmospheric Res. NCAR 2017. [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1994, 58, 267–288. [Google Scholar]
- Breiman, L. Better Subset Regression Using the Nonnegative Garrote. Technometrics 1995, 37, 373–384. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 2011, 39, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. The Lasso Method for Variable Selection in the Cox Model. Stat. Med. 1997, 16, 385–395. [Google Scholar] [CrossRef]
- Cressie, N.; Frey, J.; Harch, B.; Smith, M. Spatial prediction on a river network. J. Agric. Biol. Environ. Stat. 2006, 11, 127. [Google Scholar] [CrossRef]
- Ver Hoef, J.M.; Peterson, E.E. A Moving Average Approach for Spatial Statistical Models of Stream Networks. J. Am. Stat. Assoc. 2010, 105, 6–18. [Google Scholar] [CrossRef]
- Ver Hoef, J.M.; Peterson, E.; Theobald, D. Spatial statistical models that use flow and stream distance. Environ. Ecol. Stat. 2006, 13, 449–464. [Google Scholar] [CrossRef]
- Golub, G.H.; Heath, M.; Wahba, G. Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter. Technometrics 1979, 21, 215–223. [Google Scholar] [CrossRef]
- Rao, R.; Fung, G.; Rosales, R. On the Dangers of Cross-Validation. An Experimental Evaluation. In Proceedings of the 2008 SIAM International Conference on Data Mining, Atlanta, Georgia, 24–26 April 2008; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008; pp. 588–596. [Google Scholar]
- Smirnova, A.; Martcheva, M.; Liu, H. On generalized cross validation for stable parameter selection in disease models. J. Inverse Ill-Posed Probl. 2015, 23, 451–464. [Google Scholar] [CrossRef]
- Craven, P.; Wahba, G. Smoothing noisy data with spline functions. Numer. Math. 1978, 31, 377–403. [Google Scholar] [CrossRef]
- Thurman, E.M. Amount of Organic Carbon in Natural Waters. In Organic Geochemistry of Natural Waters; Developments in Biogeochemistry; Springer: Dordrecht, The Netherlands, 1985; pp. 7–65. ISBN 978-94-010-8752-0. [Google Scholar]
- Cressie, N.A.C. Geostatistics. In Statistics for Spatial Data; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993; pp. 27–104. ISBN 978-1-119-11515-1. [Google Scholar]
- Peterson, E.E.; Theobald, D.M.; Ver Hoef, J.M. Geostatistical modelling on stream networks: Developing valid covariance matrices based on hydrologic distance and stream flow. Freshw. Biol. 2007, 52, 267–279. [Google Scholar] [CrossRef]
- Parr, T.B.; Cronan, C.S.; Ohno, T.; Findlay, S.E.G.; Smith, S.M.C.; Simon, K.S. Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnol. Oceanogr. 2015, 60, 885–900. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service Part 618 (Subpart A). Soil Properties and Qualities. In National Soil Survey Handbook, Title 430-VI; U.S. Department of Agriculture: Washington, DC, USA, 2017.
- Soil Science Division Staff; Ditzler, C.; Scheffe, K.; Monger, H.C. Examination and Description of Soil Profiles. In Soil Survey Manual; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017. [Google Scholar]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Simard, M.; Powell, E.N.; Raffa, K.F.; Turner, M.G. What explains landscape patterns of tree mortality caused by bark beetle outbreaks in Greater Yellowstone? Glob. Ecol. Biogeogr. 2012, 21, 556–567. [Google Scholar] [CrossRef]
- Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 2001, 54, 251–278. [Google Scholar] [CrossRef]
- Bladon, K.D.; Silins, U.; Wagner, M.J.; Stone, M.; Emelko, M.B.; Mendoza, C.A.; Devito, K.J.; Boon, S. Wildfire impacts on nitrogen concentration and production from headwater streams in southern Alberta’s Rocky Mountains. Can. J. For. Res. 2008, 38, 2359–2371. [Google Scholar] [CrossRef]
- Noske, P.J.; Lane, P.N.J.; Sheridan, G.J. Stream exports of coarse matter and phosphorus following wildfire in NE Victoria, Australia. Hydrol. Process. 2010, 24, 1514–1529. [Google Scholar] [CrossRef]
- Burke, J.M.; Prepas, E.E.; Pinder, S. Runoff and phosphorus export patterns in large forested watersheds on the western Canadian Boreal Plain before and for 4 years after wildfire. J. Environ. Eng. Sci. 2005, 4, 319–325. [Google Scholar] [CrossRef]
- Earl, S.R.; Blinn, D.W. Effects of wildfire ash on water chemistry and biota in South-Western U.S.A. streams. Freshw. Biol. 2003, 48, 1015–1030. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Ryan, S.E.; Dwire, K.A.; Dixon, M.K. Impacts of wildfire on runoff and sediment loads at Little Granite Creek, western Wyoming. Geomorphology 2011, 129, 113–130. [Google Scholar] [CrossRef]
- Rhoades, C.C.; Entwistle, D.; Butler, D. The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado. Int. J. Wildfire Sci. 2011, 20, 430–442. [Google Scholar] [CrossRef]
- Robichaud, P.R. Measurement of post-fire hillslope erosion to evaluate and model rehabilitation treatment effectiveness and recovery. Int. J. Wildland Fire 2005, 14, 475–485. [Google Scholar] [CrossRef]
- Center for Chemical Process Safety Management Overview. In Guidelines for Fire Protection in Chemical, Petrochemical, and Hydrocarbon Processing Facilities; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 7–9. ISBN 978-0-470-92504-1.
- Anderson, H.E. Forest fuel ignitibility. Fire Technol. 1970, 6, 312–319. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Hogue, T.S. Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. Catena 2011, 87, 240–252. [Google Scholar] [CrossRef]
- Reed, D.E.; Ewers, B.E.; Pendall, E. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes. Environ. Res. Lett. 2014, 9, 105004. [Google Scholar] [CrossRef]
- Berg, B.; Davey, M.P.; Marco, A.D.; Emmett, B.; Faituri, M.; Hobbie, S.E.; Johansson, M.-B.; Liu, C.; McClaugherty, C.; Norell, L.; et al. Factors influencing limit values for pine needle litter decomposition: A synthesis for boreal and temperate pine forest systems. Biogeochemistry 2010, 100, 57–73. [Google Scholar] [CrossRef]
- Gholz, H.L.; Perry, C.S.; Cropper, W.P.; Hendry, L.C. Litterfall, Decomposition, and Nitrogen and Phosphorus Dynamics in a Chronosequence of Slash Pine (Pinus elliottii) Plantations. For. Sci. 1985, 31, 463–478. [Google Scholar]
- Delong, M.D.; Brusven, M.A. Storage and decomposition of particulate organic matter along the longitudinal gradient of an agriculturally-impacted stream. Hydrobiologia 1993, 262, 77–88. [Google Scholar] [CrossRef]
- Heinz, M.; Graeber, D.; Zak, D.; Zwirnmann, E.; Gelbrecht, J.; Pusch, M.T. Comparison of organic matter composition in agricultural versus forest affected headwaters with special emphasis on organic nitrogen. Environ. Sci. Technol. 2015, 49, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Graeber, D.; Boëchat, I.G.; Encina-Montoya, F.; Esse, C.; Gelbrecht, J.; Goyenola, G.; Gücker, B.; Heinz, M.; Kronvang, B.; Meerhoff, M.; et al. Global effects of agriculture on fluvial dissolved organic matter. Sci. Rep. 2015, 5, srep16328. [Google Scholar] [CrossRef] [PubMed]
- Shang, P.; Lu, Y.; Du, Y.; Jaffé, R.; Findlay, R.H.; Wynn, A. Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Sci. Total Environ. 2018, 612, 1442–1453. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Santanatoglia, O.J.; Garcîa, R. Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biol. Fertil. Soils 1995, 19, 227–230. [Google Scholar] [CrossRef]
- Vinolas, L.C.; Vallejo, V.R.; Jones, D.L. Control of amino acid mineralization and microbial metabolism by temperature. Soil Biol. Biochem. 2001, 33, 1137–1140. [Google Scholar] [CrossRef]
- Rumsey, C.A.; Miller, M.P.; Susong, D.D.; Tillman, F.D.; Anning, D.W. Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin. J. Hydrol. Reg. Stud. 2015, 4, 91–107. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. Storm flow flushing in a structured soil changes the composition of dissolved organic matter leached into the subsoil. Geoderma 2005, 127, 177–187. [Google Scholar] [CrossRef]
- Arnold, J.G.; Muttiah, R.S.; Srinivasan, R.; Allen, P.M. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J. Hydrol. 2000, 227, 21–40. [Google Scholar] [CrossRef]
- Hall, F.R. Base-Flow Recessions—A Review. Water Resour. Res. 1968, 4, 973–983. [Google Scholar] [CrossRef]
- Štursová, M.; Šnajdr, J.; Cajthaml, T.; Bárta, J.; Šantrůčková, H.; Baldrian, P. When the forest dies: The response of forest soil fungi to a bark beetle-induced tree dieback. ISME J. 2014, 8, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.M.; Robertson, S.J.; Green, D.S.; Scholefield, S.R.; Arocena, J.M.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests. Folia Microbiol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.J.; Pace, N.R. Phylogenetic Composition of Rocky Mountain Endolithic Microbial Ecosystems. Appl. Environ. Microbiol. 2007, 73, 3497–3504. [Google Scholar] [CrossRef] [PubMed]
- Lipson, D.A.; Schmidt, S.K. Seasonal changes in an alpine soil bacterial community in the colorado rocky mountains. Appl. Environ. Microbiol. 2004, 70, 2867–2879. [Google Scholar] [CrossRef] [PubMed]
- Kaňa, J.; Tahovská, K.; Kopáček, J.; Šantrůčková, H. Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation. PLoS ONE 2015, 10, e0134165. [Google Scholar] [CrossRef] [PubMed]
- Condon, L.E.; Hering, A.S.; Maxwell, R.M. Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm. Adv. Water Resour. 2015, 82, 106–123. [Google Scholar] [CrossRef]
- Maguire, D.Y.; James, P.M.A.; Buddle, C.M.; Bennett, E.M. Landscape connectivity and insect herbivory: A framework for understanding tradeoffs among ecosystem services. Glob. Ecol. Conserv. 2015, 4, 73–84. [Google Scholar] [CrossRef]
- Morris, J.L.; Cottrell, S.; Fettig, C.J.; DeRose, J.; Mattor, K.M.; Carter, V.A.; Clear, J.; Clement, J.; Hansen, W.D.; Hicke, J.A.; et al. Bark beetles as agents of change in social–ecological systems. Front. Ecol. Environ. 2018, 16, S34–S43. [Google Scholar] [CrossRef]
- Morris, J.L.; Cottrell, S.; Fettig, C.J.; Hansen, W.D.; Sherriff, R.L.; Carter, V.A.; Clear, J.L.; Clement, J.; DeRose, R.J.; Hicke, J.A.; et al. Marini Lorenzo Managing bark beetle impacts on ecosystems and society: Priority questions to motivate future research. J. Appl. Ecol. 2016, 54, 750–760. [Google Scholar] [CrossRef]
- McGrady, P.; Cottrell, S.; Clement, J.; Cottrell, J.R.; Czaja, M. Local Perceptions of MPB Infestation, Forest Management, and Connection to National Forests in Colorado and Wyoming. Hum. Ecol. 2016, 44, 185–196. [Google Scholar] [CrossRef]
- Arnberger, A.; Ebenberger, M.; Schneider, I.E.; Cottrell, S.; Schlueter, A.C.; von Ruschkowski, E.; Venette, R.C.; Snyder, S.A.; Gobster, P.H. Visitor Preferences for Visual Changes in Bark Beetle-Impacted Forest Recreation Settings in the United States and Germany. Environ. Manag. 2018, 61, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Norden, N.; Angarita, H.A.; Bongers, F.; Martínez-Ramos, M.; la Cerda, I.G.; van Breugel, M.; Lebrija-Trejos, E.; Meave, J.A.; Vandermeer, J.; Williamson, G.B.; et al. Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proc. Natl. Acad. Sci. USA 2015, 112, 8013–8018. [Google Scholar] [CrossRef] [PubMed]
- Fites, J.A.; Reiner, A.; Campbell, M.; Taylor, Z. Fire Behavior and Effects, Suppression, and Fuel Treatments on the Ham Lake and Cavity Lake Fires; Superior National Forest, Eastern Region, USDA Forest Service: Washington, DC, USA, 2007.
- Liebsch, D.; Marques, M.C.M.; Goldenberg, R. How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol. Conserv. 2008, 141, 1717–1725. [Google Scholar] [CrossRef]
- Wear, D.N.; Greis, J.G. Southern Forest Resource Assessment—Technical Report; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2002.
- Romme, W.H.; Boyce, M.S.; Gresswell, R.; Merrill, E.H.; Minshall, G.W.; Whitlock, C.; Turner, M.G. Twenty Years After the 1988 Yellowstone Fires: Lessons About Disturbance and Ecosystems. Ecosystems 2011, 14, 20. [Google Scholar] [CrossRef]
- Turner, M.G.; Romme, W.H.; Tinker, D.B. Surprises and lessons from the 1988 Yellowstone fires. Front. Ecol. Environ. 2003, 1, 351–358. [Google Scholar] [CrossRef]
- Savage, M.; Mast, J.N. How resilient are southwestern ponderosa pine forests after crown fires? Can. J. For. Res. 2005, 35, 967–977. [Google Scholar] [CrossRef]
- Baker, W.L.; Veblen, T.T.; Sherriff, R.L. Fire, fuels and restoration of ponderosa pine–Douglas fir forests in the Rocky Mountains, USA. J. Biogeogr. 2007, 34, 251–269. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- NASA Landsat Program. USGS Landsat 5 TM Raw Scenes (Orthorectified); USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2012.
- Rouse, J.W.; Haas, H.R.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA-Scientific and Technical Reports Information Program: Washington, DC, USA, 1974; pp. 301–317.
- Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. BioScience 2008, 58, 501–517. [Google Scholar] [CrossRef]
- Park Williams, A.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Brouillard, B.; Sharp, J.O.; Dickenson, E.R.V.; Hogue, T.S.; Spear, J.R.; Rodriguez, D. Biogeochemical and Ecological Impacts Resulting from Beetle-Induced Forest Mortality; Colorado School of Mines; Arthur Lakes Library: Golden, CO, USA, 2017. [Google Scholar]
- Johnson, E.W.; Ross, J. USDA Forest Service Rocky Mountain Region Forest Health Aerial—Survey Accuracy Assessment 2005 Report; Technical Report R2-06-08; USDA Forest Service: Washington, DC, USA, 2006.
- Meddens, A.J.H.; Hicke, J.A.; Ferguson, C.A. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol. Appl. 2012, 22, 1876–1891. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.L. 2013 Forest Insect and Disease Conditions, Rocky Mountain Region (R2); USDA Forest Service: Washington, DC, USA, 2014; p. 77.
- Penn, C.A.; Bearup, L.A.; Maxwell, R.M.; Clow, D.W. Numerical experiments to explain multiscale hydrological responses to mountain pine beetle tree mortality in a headwater watershed. Water Resour. Res. 2016, 52, 31433161. [Google Scholar] [CrossRef]
- Bearup, L.A.; Maxwell, R.M.; Clow, D.W.; McCray, J.E. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat. Clim. Chang. 2014, 4, 481–486. [Google Scholar] [CrossRef]
- Herzog, S.P.; Higgins, C.P.; McCray, J.E. Engineered Streambeds for Induced Hyporheic Flow: Enhanced Removal of Nutrients, Pathogens, and Metals from Urban Streams. J. Environ. Eng. 2016, 142, 04015053. [Google Scholar] [CrossRef]
- Johnston, C.A. Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. Crit. Rev. Environ. Control 1991, 21, 491–565. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Quanrud, D.M.; Arnold, R.G.; Gray Wilson, L.; Conklin, M.H. Effect of soil type on water quality improvement during soil aquifer treatment. Water Sci. Technol. 1996, 33, 419–431. [Google Scholar] [CrossRef]
- Tong, S.T.Y.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef]
- Soil Survey Staff, Natural Resources Conservation Service. U.S. General Soil Map (STATSGO2); United States Department of Agriculture: Washington, DC, USA, 2017.
- United States Department of Agriculture. Natural Resources Conservation Service Soil Data Viewer 6.2—User Guide Version 3; United States Department of Agriculture: Washington, DC, USA, 2015.
- O’Connor, D.J. The temporal and spatial distribution of dissolved oxygen in streams. Water Resour. Res. 1967, 3, 65–79. [Google Scholar] [CrossRef]
- Jacobsen, D.; Marín, R. Bolivian Altiplano streams with low richness of macroinvertebrates and large diel fluctuations in temperature and dissolved oxygen. Aquat. Ecol. 2008, 42, 643–656. [Google Scholar] [CrossRef]
- Matthews, K.R.; Berg, N.H. Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. J. Fish Biol. 1997, 50, 50–67. [Google Scholar] [CrossRef]
- Beven, K.J. Down to the Basics: Runoff Processes and the Modelling Process—Runoff Generation and Runoff Routing. In Rainfall-Runoff Modelling: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-1-119-95101-8. [Google Scholar]
- Eva, H.; Lambin, E.F. Fires and land-cover change in the tropics: A remote sensing analysis at the landscape scale. J. Biogeogr. 2000, 27, 765–776. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Fry, J.; Xian, G.; Jin, S.; Dewitz, J.; Homer, C.; Yang, L.; Barnes, C.; Herold, N.; Wickham, J. Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 2011, 77, 858–864. [Google Scholar]
- Jin, S.; Yang, L.; Danielson, P.; Homer, C.; Fry, J.; Xian, G. A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sens. Environ. 2013, 132, 159–175. [Google Scholar] [CrossRef]
- Liang, L.; Chen, Y.; Hawbaker, T.J.; Zhu, Z.; Gong, P. Mapping mountain pine beetle mortality through growth trend analysis of time-series Landsat data. Remote Sens. 2014, 6, 5696–5716. [Google Scholar] [CrossRef]
- Clow, D.W.; Nanus, L.; Verdin, K.L.; Schmidt, J. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA. Hydrol. Process. 2012, 26, 2583–2591. [Google Scholar] [CrossRef]
- Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States. J. Clim. 2002, 15, 3237–3251. [Google Scholar] [CrossRef]
- Tang, Q.; Vivoni, E.R.; Muñoz-Arriola, F.; Lettenmaier, D.P. Predictability of Evapotranspiration Patterns Using Remotely Sensed Vegetation Dynamics during the North American Monsoon. J. Hydrometeorol. 2011, 13, 103–121. [Google Scholar] [CrossRef]
- Cayan, D.R.; Dettinger, M.D.; Diaz, H.F.; Graham, N.E. Decadal Variability of Precipitation over Western North America. J. Clim. 1998, 11, 3148–3166. [Google Scholar] [CrossRef]
- Hauer, F.R.; Baron, J.S.; Campbell, D.H.; Fausch, K.D.; Hostetler, S.W.; Leavesley, G.H.; Leavitt, P.R.; Mcknight, D.M.; Stanford, J.A. Assessment of climate change and freshwater ecosystems of the Rocky Mountains, USA and Canada. Hydrol. Process. 1997, 11, 903–924. [Google Scholar] [CrossRef]
- Ross, T.; Lott, N.; McCown, S.; Quinn, D. The El Niño Winter of ’97-’98; National Climatic Data Center; National Oceanic and Atmospheric Administration: Asheville, NC, USA, 1998.
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The Interaction of Fire, Fuels, and Climate across Rocky Mountain Forests. BioScience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, J.; Cao, M.; Li, K.; Tao, B. Impacts of land-use and climate changes on ecosystem productivity and carbon cycle in the cropping-grazing transitional zone in China. Sci. China Ser. Earth Sci. 2005, 48, 1479–1491. [Google Scholar] [CrossRef]
- Hosen, J.D.; McDonough, O.T.; Febria, C.M.; Palmer, M.A. Dissolved Organic Matter Quality and Bioavailability Changes across an Urbanization Gradient in Headwater Streams. Environ. Sci. Technol. 2014, 48, 7817–7824. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.H.B.; Montebelo, A.A.; Bernardes, M.C.; Ometto, J.P.H.B.; de Camargo, P.B.; Krusche, A.V.; Ballester, M.V.; Victoria, R.L.; Martinelli, L.A. Effects of Urban Sewage on Dissolved Oxygen, Dissolved Inorganic and Organic Carbon, and Electrical Conductivity of Small Streams along a Gradient of Urbanization in the Piracicaba River Basin. Water. Air. Soil Pollut. 2002, 136, 189–206. [Google Scholar] [CrossRef]
- Westerhoff, P.; Anning, D. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization. J. Hydrol. 2000, 236, 202–222. [Google Scholar] [CrossRef]
Category | Feature | Number of Coefficients | Potential Predictors |
---|---|---|---|
Forest Disturbance | Fires | 1 | Accumulated Relative differenced Normalized Burn Ratio () |
Mountain pine beetle (MPB) Infestations | 3 | Fraction of affected area for the green, red, and gray phases | |
Morphological | Topography | 9 | Mean elevation and predominant aspect among 9 classes a |
Hydrologic Soil Types | 3 | Fraction covered by soil types A, B, and C b | |
Climate | Precipitation | 3 | Mean monthly precipitation for the base-flow period, non-base-flow period, and the entire year |
Temperature | 6 | Mean monthly minimum and maximum temperatures for the base-flow period, non-base-flow period, and the entire year | |
Snow Cover | 3 | Mean monthly snow water equivalent (SWE) for the base-flow period, non-base-flow period, and the entire year | |
Anthropogenic | Land Cover | 3 | Fraction of area covered by developed, agricultural, and forest land cover types, individually |
Wastewater Point Sources | 1 | Number of wastewater point sources |
Covariate | Mean | Standard Deviation | Minimum | Maximum | Transformation | Coefficient Value |
---|---|---|---|---|---|---|
Intercept (mg/L) | None | 2.5194 | ||||
Time (year) | 2000.32 | 6.47 | 1984 | 2012 | Center to mean | 0.0004 |
Accumulated | 3676.94 | 29,963.35 | 0 | 714,890.71 | Scale by st. dev. | 0.1257 |
MPB: Green phase fraction | 0.00 | 0.02 | 0 | 0.30 | None | 0 |
MPB: Red phase fraction | 0.01 | 0.04 | 0 | 0.40 | None | 0 |
MPB: Gray phase fraction | 0.01 | 0.04 | 0 | 0.49 | None | 0.0218 |
Developed fraction | 0.06 | 0.16 | 0 | 0.99 | None | 2.9290 |
Agricultural fraction | 0.01 | 0.06 | 0 | 0.65 | None | −0.1682 |
Forest fraction | 0.40 | 0.30 | 0 | 1 | None | 0 |
Base-flow mean minimum monthly temperature (°C) | −4.45 | 3.16 | −8.78 | 5.97 | Center to mean | 0 |
Non-base-flow mean minimum monthly temperature (°C) | −8.94 | 3.41 | −14.15 | 2.18 | Center to mean | 0 |
Yearly mean minimum monthly temperature (°C) | −7.44 | 3.30 | −12.15 | 3.33 | Center to mean | 0 |
Base-flow mean maximum monthly temperature (°C) | 12.64 | 3.27 | 7.63 | 24.00 | Center to mean | 0.0999 |
Non-base-flow mean maximum monthly temperature (°C) | 7.43 | 3.51 | 2.69 | 19.29 | Center to mean | 0 |
Yearly mean maximum monthly temperature (°C) | 9.17 | 3.38 | 4.90 | 20.50 | Center to mean | 0 |
Base-flow mean monthly precipitation (mm) | 1.89 | 0.65 | 0.54 | 4.63 | Center to mean | 0.1238 |
Non-base-flow mean monthly precipitation (mm) | 2.26 | 0.94 | 0.19 | 5.35 | Center to mean | −0.1299 |
Yearly mean monthly precipitation (mm) | 2.14 | 0.77 | 0.45 | 4.86 | Center to mean | 0 |
Base-flow mean monthly SWE (mm) | 11.91 | 12.33 | 0 | 74.05 | Center to mean | 0 |
Non-base-flow mean monthly SWE (mm) | 161.37 | 134.08 | 0.05 | 1111.40 | Center to mean | 0 |
Yearly mean monthly SWE (mm) | 111.55 | 91.99 | 0.07 | 757.00 | Center to mean | 0 |
Type A soil fraction | 0.46 | 0.41 | 0 | 1 | Center to mean | 0 |
Type B soil fraction | 0.37 | 0.31 | 0 | 1 | Center to mean | 0.6371 |
Type C soil fraction | 0.09 | 0.20 | 0 | 1 | Center to mean | 0 |
Mean elevation (m) | 3071.74 | 530.74 | 1517.78 | 3680.83 | Center to mean | −0.0014 |
Number of wastewater point sources | 4.42 | 11.99 | 0 | 55 | Center to mean | 0.0630 |
North predominant aspect | 0.09 | 0.28 | 0 | 1 | None | 0.1195 |
Northeast predominant aspect | 0.05 | 0.21 | 0 | 1 | None | −0.1727 |
East predominant aspect | 0.25 | 0.43 | 0 | 1 | None | 0.9548 |
Southeast predominant aspect | 0.05 | 0.23 | 0 | 1 | None | 0 |
South predominant aspect | 0.08 | 0.26 | 0 | 1 | None | 0 |
Southwest predominant aspect | 0.14 | 0.34 | 0 | 1 | None | 0.0775 |
West predominant aspect | 0.07 | 0.26 | 0 | 1 | None | −0.4632 |
Northwest predominant aspect | 0.27 | 0.45 | 0 | 1 | None | −0.1511 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Jeangros, N.; Hering, A.S.; McCray, J.E. Analysis of Anthropogenic, Climatological, and Morphological Influences on Dissolved Organic Matter in Rocky Mountain Streams. Water 2018, 10, 534. https://doi.org/10.3390/w10040534
Rodríguez-Jeangros N, Hering AS, McCray JE. Analysis of Anthropogenic, Climatological, and Morphological Influences on Dissolved Organic Matter in Rocky Mountain Streams. Water. 2018; 10(4):534. https://doi.org/10.3390/w10040534
Chicago/Turabian StyleRodríguez-Jeangros, Nicolás, Amanda S. Hering, and John E. McCray. 2018. "Analysis of Anthropogenic, Climatological, and Morphological Influences on Dissolved Organic Matter in Rocky Mountain Streams" Water 10, no. 4: 534. https://doi.org/10.3390/w10040534
APA StyleRodríguez-Jeangros, N., Hering, A. S., & McCray, J. E. (2018). Analysis of Anthropogenic, Climatological, and Morphological Influences on Dissolved Organic Matter in Rocky Mountain Streams. Water, 10(4), 534. https://doi.org/10.3390/w10040534