Sub-Seasonal Snowpack Trends in the Rocky Mountain National Park Area, Colorado, USA
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
4. Results
4.1. First of the Month’s SWE Trends
4.2. SWE Trends over the Month
4.3. Precipitation, Temperature and Freezing-Level Trends
5. Discussion
5.1. Variability in Monthly Measures of SWE
5.2. Precipitation Trends
5.3. Temperature Trends
5.4. Climatic and Other Influences on SWE
5.5. Concerns with the Data
5.6. Implications for Water and Snow Resource Management
6. Conclusions
Data Availability
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western United States. Water Resour. Res. 2006, 42, W08432. [Google Scholar] [CrossRef]
- Serreze, M.C.; Clark, M.P.; Armstrong, R.L.; McGinnis, D.A.; Pulwarty, R.S. Characteristics of the Western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res. 1999, 35, 2145–2160. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A.; et al. Human-induced changes in the hydrology of the western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [PubMed]
- Colorado Climate Center. Colorado Climate Center; Colorado State University: Fort Collins, CO, USA; Available online: http://climate.colostate.edu/ (accessed on 10 April 2018).
- Harding, B.L.; Payton, E.A. Marginal economic value of streamflow. Water Resour. Res. 1990, 26, 2845–2859. [Google Scholar]
- RRC Associates. Colorado Ski Country USA: Economic Study Reveals Ski Industry’s $4.8 Billion Annual Impact to Colorado; Summary of RRC Associates: Boulder, CO, USA, 2015; Available online: http://coloradoski.com/media_manager/mm_collections/view/183 (accessed on 4 April 2018).
- National Park Service. NPS Stats National Park Service Visitor Use Statistics. Available online: https://irma.nps.gov/Stats/Reports/Park (accessed on 5 April 2018).
- National Park Service. Rocky Mountain National Park. 2017. Available online: https://www.nps.gov/romo/index.htm (accessed on 4 April 2018).
- Papadogiannaki, E.; Le, Y.; Hollenhorst, S.J. Rocky Mountain National Park Visitor Study, Winter 2011; Visitor Services Project; NPS 121/111373; Park Studies Unit, University of Idaho: Moscow, ID, USA, 2011; Available online: http://psu.sesrc.wsu.edu/vsp/reports/235.2_ROMO_rept.pdf (accessed on 24 February 2016).
- Gilaberte-Burdalo, M.; Lopez-Martin, F.; Pino-Otin, M.R.; Lopez-Moreno, J.I. Impacts of climate change on ski industry. Environ. Sci. Technol. 2014, 44, 51–61. [Google Scholar] [CrossRef]
- Lazar, B.; Williams, M. Climate change in western ski areas: Potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Reg. Sci. Technol. 2008, 51, 219–228. [Google Scholar] [CrossRef]
- Burakowski, E.; Magnusson, M. Climate Impacts on the Winter Tourism Economy in the United States; Natural Resources Defense Council: New York, NY, USA, 2012; p. 36. Available online: https://www.nrdc.org/sites/default/files/climate-impacts-winter-tourism-report.pdf (accessed on 8 April 2018).
- Lukas, J.; Barsugli, J.; Doesken, N.; Rangwala, I.; Wolter, K. Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation, 2nd ed.; Report to the Colorado Water Conservation Board; Western Water Assessment; Cooperative Institute for Research in Environmental Sciences, University of Colorado: Boulder, CO, USA, 2014; 114p. [Google Scholar]
- Clow, D.W. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Harpold, A.; Brooks, P.; Rajagopal, S.; Heidbuchel, I.; Jardine, A.; Stielstra, C. Changes in snowpack accumulation and ablation in the intermountain west. Water Resour. Res. 2012, 48, W11501–W11511. [Google Scholar] [CrossRef]
- Mote, P.W.; Hamlet, A.F.; Clark, M.P.; Lettenmaier, D.P. Declining mountain snowpack in western North America. Bull. Am. Meteorol. Soc. 2005, 86, 39–49. [Google Scholar] [CrossRef]
- Ray, A.J.; Barsugli, J.J.; Averyt, K.B. Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation; Report for the Colorado Water Conservation Board; Western Water Assessment; Cooperative Institute for Research in Environmental Sciences, University of Colorado: Boulder, CO, USA, 2008; 58p. [Google Scholar]
- Diaz, H.F.; Eischeid, J.K. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys. Res. Lett. 2007, 34, L18707. [Google Scholar] [CrossRef]
- McGuire, C.R.; Nufio, C.R.; Bowers, M.D.; Guralnick, R.P. Elevation-dependent temperature trends in the Rocky Mountain Front Range: Changes over a 56- and 20-year record. PLoS ONE 2009, 7, e44370. [Google Scholar] [CrossRef] [PubMed]
- Helsel, D.R.; Frans, L.M. Regional Kendall test for trend. Environ. Sci. Technol. 2006, 40, 4066–4070. [Google Scholar] [CrossRef] [PubMed]
- Mote, P.W.; Li, S.; Lettenmaier, D.P.; Xiao, M.; Engel, R. Dramatic declines in snowpack in the western US. NPJ Clim. Atmos. Sci. 2018, 1. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Dressler, K.A.; Bales, R.C. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour. Res. 2003, 39, 1208. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Derry, J.E. Defining similar regions of snow in the Colorado River Basin using self-organizing maps. Water Resour. Res. 2010, 46, W04507. [Google Scholar] [CrossRef]
- Rasmussen, R.; Ikeda, K.; Liu, C.; Gochis, D.; Clark, M.; Dai, A.; Gutmann, E.; Dudhia, J.; Chen, F.; Barlage, M.; et al. Climate Change Impacts on the Water Balance of the Colorado Headwaters: High-Resolution Regional Climate Model Simulations. J. Hydrometeorol. 2014, 15, 1091–1116. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Hultstrand, M. Snowpack Variability and Trends at Long-term Stations in Northern Colorado, USA. Proc. Int. Assoc. Hydrol. Sci. 2015, 371, 131–136. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Records, R.M. Large Snowmelt versus Rainfall Events in the Mountains. J. Geophys. Res. 2015, 120, 2375–2381. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; López-Moreno, J.I.; Ma, C.; Weber, A.N.; Pfohl, A.K.D.; Kampf, S.K.; Kappas, M. Spatio-temporal Snowmelt Variability across the Headwaters of the Southern Rocky Mountains. Front. Earth Sci. 2017, 11, 505–514. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes toward earlier streamflow timing across western North America. J. Clim. 2005, 18, 1136–1155. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes in snowmelt runoff timing in western North America under a “business as usual” climate change scenario. Clim. Chang. 2004, 62, 217–232. [Google Scholar] [CrossRef]
- Fritze, H.; Stewart, I.T.; Pebesma, E. Shifts in western North American snowmelt runoff regimes for the recent warm decades. J. Hydrometeorol. 2011, 12, 989–1006. [Google Scholar] [CrossRef]
- Pfohl, A.K.D. Trends in Snowmelt Contribution to Streamflow in the Southern Rocky Mountains of Colorado. Unpublished Master’s Thesis, Watershed Science, Colorado State University, Fort Collins, CO, USA, 2016. [Google Scholar]
- Cayan, D.R. Interannual climate variability and snowpack in the western United States. J. Clim. 1996, 9, 928–948. [Google Scholar] [CrossRef]
- Mote, P.W. Trends in snow water equivalent in the Pacific Northwest and their climatic causes. Geophys. Res. Lett. 2003, 30, 1601–1604. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Mote, P.W.; Clark, M.P.; Lettenmaier, D.P. Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Clim. 2005, 18, 4545–4561. [Google Scholar] [CrossRef]
- Regonda, S.K.; Rajagopalan, B.; Clark, M.; Pitlick, J. Seasonal cycle shifts in hydroclimatology over the western United States. J. Clim. 2005, 18, 372–384. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Hidalgo, H.G.; Das, T.; Bonfils, C.; Santer, B.D.; Bala, G.; Dettinger, M.D.; Cayan, D.R.; Mirin, A.; et al. Attribution of Declining Western U.S. Snowpack to Human Effects. J. Clim. 2008, 21, 6425–6444. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. Recent declines in western U.S. snowpack in the context of twentieth-century climate variability. Earth Interact. 2009, 13, 1–15. [Google Scholar] [CrossRef]
- Kapnick, S.; Hall, A. Causes of recent changes in western North American snowpack. Clim. Dyn. 2012, 38, 1885–1899. [Google Scholar] [CrossRef]
- National Water and Climate Center (USDA). Snow Survey and Water Supply Forecasting Program. Available online: https://www.wcc.nrcs.usda.gov/snotel/program_brochure.pdf (accessed on 4 April 2018).
- U.S. Department of Agriculture. Snow Survey and Water Supply Forecasting. In National Engineering Handbook Part 622; National Water and Climate Center (USDA): Portland, OR, USA, 2011. [Google Scholar]
- Fassnacht, S.R.; Dressler, K.A.; Hultstrand, D.M.; Bales, R.C.; Patterson, G.G. Temporal Inconsistencies in Coarse-scale Snow Water Equivalent Patterns: Colorado River Basin Snow Telemetry-Topography Regressions. Pirineos 2012, 167, 167–186. [Google Scholar] [CrossRef]
- Sexstone, G.A.; Fassnacht, S.R. What drives basin scale spatial variability of snowpack properties in the Front Range of Northern Colorado? Cryosphere 2014, 8, 329–344. [Google Scholar] [CrossRef] [Green Version]
- U.S. Forest Service. Recreation, Heritage & Volunteer Resources Programs National Visitor Use Monitoring Program. Available online: https://www.fs.fed.us/recreation/programs/nvum/ (accessed on 10 April 2018).
- Sexstone, G.A.; Clow, D.W.; Fassnacht, S.R.; Liston, G.E.; Hiemstra, C.A.; Knowles, J.F.; Penn, C.A. Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming. Water Resour. Res. 2018, 542, 1191–1211. [Google Scholar] [CrossRef]
- Dressler, K.A.; Fassnacht, S.R.; Bales, R.C. A comparison of snow telemetry and snow course measurements in the Colorado River Basin. J. Hydrometeorol. 2006, 7, 705–712. [Google Scholar] [CrossRef]
- Patterson, G.G.; Fassnacht, S.R. Niveograph interpolation to estimate peak accumulation of snow water equivalent in Rocky Mountain National Park. Proc. Ann. West. Snow Conf. 2014, 82, 109–116. [Google Scholar]
- Julander, R.P.; Curtis, J.; Beard, A. The SNOTEL Temperature Dataset. Mt. Views Newslett. 2007, 1, 4–7. Available online: http://www.fs.fed.us/psw/cirmount/ (accessed on 6 April 2018).
- National Oceanic and Atmospheric Administration. National Center for Environmental Information. Available online: https://www.ncdc.noaa.gov/ (accessed on 10 April 2018).
- Colorado State University. Loch Vale Watershed Data. 2011. Available online: https://www2.nrel.colostate.edu/projects/lvws/ (accessed on 10 April 2018).
- Rense, W.P.; Rocky Mountain Hydrologic Research Center, Allenspark, CO, USA. Personal communication, 2016.
- Patterson, G.G. Trends in Snow Water Equivalent in Rocky Mountain National Park and the Northern Front Range of Colorado, USA. Ph.D. Thesis, Department of Geosciences, Colorado State University, Fort Collins, CO, USA, 2016. Available online: https://search.proquest.com/docview/1857454900?pq-origsite=primo (accessed on 11 April 2018).
- Oyler, J.W.; Dobrowski, S.Z.; Ballantyne, A.P.; Klene, A.E.; Running, S.W. Artificial amplification of warming trends across the mountains of the western United States. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Ma, C.; Fassnacht, S.R.; Kampf, S.K. How Sensor Change Affects Warming Trends and Modeling across Colorado. Water Resour. Res. 2017, WR021922. in review. [Google Scholar]
- Ma, C. Evaluating and Correcting Sensor Change Artifacts in the SNOTEL Temperature Records, Southern Rocky Mountains, Colorado. Unpublished Master’s Thesis, Watershed Science Program, Colorado State University, Fort Collins, CO, USA, 2017; 43p. [Google Scholar]
- Redmond, K.; Abatzoglou, J. NOAA North American Freezing Level Tracker; Desert Research Institute: Reno, NV, USA; Available online: https://wrcc.dri.edu/cwd/products/ (accessed on 5 April 2018).
- Pagano, T.C. Quantification of the influence of snow course measurement date on climatic trends. Clim. Chang. 2012, 114, 549. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 163–171. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; p. 272. ISBN 978-0195208375. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Wiley: New York, NY, USA, 1987; p. 320. ISBN 978-0471288787. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, 1, 2, and 3. Proc. K. Ned. Akad. Wetenschap. A 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources. In Techniques of Water Resources Investigations, Book 4, Chapter A3; U.S. Geological Survey: Reston, VA, USA, 1995; p. 522. [Google Scholar]
- Fassnacht, S.R.; Wyss, D.; Heering, S.M. A Spatial Thinking Research-Didactic Example in Snow. Geoöko 2017, 37. Available online: https://www.uni-goettingen.de/en/153334.html (accessed on 5 April 2018).
- Fassnacht, S.R.; Brown, K.S.J.; Blumberg, E.J.; López Moreno, J.I.; Covino, T.P.; Kappas, M.; Huang, Y.; Leone, V.; Kashipazha, A.H. Distribution of Snow Depth Variability. Front. Earth Sci. in review.
- Fassnacht, S.R.; Cherry, M.L.; Venable, N.B.H.; Saavedra, F. Snow and Albedo Climate Change Impacts across the United States Northern Great Plains. Cryosphere 2016, 10, 329–339. [Google Scholar] [CrossRef]
- Knowles, N.; Dettinger, M.D.; Cayan, D.R. Trends in snowfall versus rainfall in the western United States. J. Clim. 2006, 19, 4545–4559. [Google Scholar] [CrossRef]
- Bradley, B.A.; Jacob, R.W.; Hermance, J.F.; Mustard, J.F. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 2007, 106, 137–145. [Google Scholar] [CrossRef]
- Venable, N.B.H.; Fassnacht, S.R.; Adyabadam, G.; Tumenjargal, S.; Fernández-Giménez, M.; Batbuyan, B. Does the Length of Station Record Influence the Warming Trend That is Perceived by Mongolian Herders near the Khangai Mountains? Pirineos 2012, 167, 71–88. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Vines, R.G. Rainfall patterns in the western United States. J. Geophys. Res. 1982, 87, 7303–7311. [Google Scholar] [CrossRef]
- Fu, C.; James, A.L.; Wachowiak, M. Analyzing the combined influence of solar activity and El Nino on streamflow across southern Canada. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Soulis, E.D. Implications during transitional periods of improvements to the snow processes in the Land Surface Scheme—Hydrological Model WATCLASS. Atmos. Ocean 2002, 40, 389–403. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Venable, N.B.H.; Khishigbayar, J.; Cherry, M.L. The Probability of Precipitation as Snow Derived from Daily Air Temperature for High Elevation Areas of Colorado, United States. In Proceedings of the Cold and Mountain Region Hydrological Systems Under Climate Change: Towards Improved Projections, Gothenburg, Sweden, 22–26 July 2013; pp. 65–70. [Google Scholar]
- Harder, P.; Pomeroy, J.W. Hydrological model uncertainty due to precipitation-phase partitioning methods. Hydrol. Process. 2014, 28, 4311–4327. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Losleben, M.; Pepin, N. Spatial and Temporal Variability in Snowpack Controls: Two Decades of SnoTel Data from the Western U.S. In Proceedings of the 2003 PACLIM Conference, Sacramento, CA, USA, 1–3 April 2003; pp. 23–32. [Google Scholar]
- Hoover, J.D.; Doesken, N.; Elder, K.; Laituri, M.; Liston, G.E. Temporal Trend Analyses of Alpine Data Using North American Regional Reanalysis and In Situ Data: Temperature, Wind Speed, Precipitation, and Derived Blowing Snow. J. Appl. Meteorol. Climatol. 2014, 53, 676–693. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraër, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative forcing and albedo feedback from the northern hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [Google Scholar] [CrossRef]
- Painter, T.H.; Deems, J.S.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. USA 2010, 107, 17125–17130. [Google Scholar] [CrossRef] [PubMed]
- Flanner, M.G.; Zender, C.S.; Hess, P.G.; Mahowald, N.M.; Painter, T.H.; Ramanathan, V.; Rasch, P.J. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 2009, 9, 2481–2497. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Williams, M.W.; Corrao, M.V. Changes in the surface roughness of snow from millimetre to metre scales. Ecol. Complex. 2009, 6, 221–229. [Google Scholar] [CrossRef]
- Neff, J.C.; Ballantyne, A.P.; Farmer, G.L.; Mahowald, N.M.; Conroy, J.L.; Landry, C.C.; Overpeck, J.T.; Painter, T.H.; Lawrence, C.R.; Reynolds, R.L. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 2008, 1, 189–195. [Google Scholar] [CrossRef]
- Naud, C.M.; Chen, Y.; Rangwala, I.; Miller, J.R. Sensitivity of downward longwave surface radiation to moisture and cloud changes in a high-elevation region. J. Geophys. Res Atmos. 2013, 118, 10172–10181. [Google Scholar] [CrossRef]
- Bohr, G.S.; Aguado, E. Use of April 1st SWE measurements as estimates of peak seasonal snowpack and total cold-season precipitation. Water Resour. Res. 2001, 37, 51–60. [Google Scholar] [CrossRef]
- Meromy, L.; Molotch, N.P.; Link, T.E.; Fassnacht, S.R.; Rice, R. Subgrid variability of snow water equivalent at operational snow stations in the western United States. Hydrol. Process. 2013, 27, 2383–2400. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, S.R.; Heath, J.T.; Venable, N.B.H.; Elder, K.J. Snowmobile Impacts on Snowpack Physical and Mechanical Properties. Cryosphere 2018, 12, 1121–1135. [Google Scholar] [CrossRef]
- Hart, G. Turn on the News. In Chapter 22 on Zen Arcade; Solid State Tuners: Taylor, TX, USA, 1984. [Google Scholar]
- Marke, T.; Strasser, U.; Hanzer, F.; Stötter, J.; Wilcke, R.A.I.; Gobiet, A. Scenarios of future snow conditions in Styria (Austrian Alps). J. Hydrometeorol. 2015, 16, 261–277. [Google Scholar] [CrossRef]
Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Winter | Summer | |
---|---|---|---|---|---|---|---|---|---|---|
(a) First of the Month’s SWE | ||||||||||
r2 | NS 1 | 0.52 | 0.66 | 0.31 | 0.27 | 0.32 | 0.16 | NS | N/A | N/A |
Slope | NS | −19.1 | −35.8 | −34.3 | −34.9 | −41.9 | −28.9 | NS | N/A | N/A |
y-Intercept | NS | 2676 | 2888 | 2926 | 3093 | 2667 | 2812 | NS | N/A | N/A |
(b) Change in Monthly SWE | ||||||||||
r2 | 0.47 | 0.56 | NS | NS | NS | NS | NS | N/A | N/A | N/A |
Slope | −30.4 | −20.8 | NS | NS | NS | NS | NS | N/A | N/A | N/A |
y-Intercept | 2649 | 3521 | NS | NS | NS | NS | NS | N/A | N/A | N/A |
(c) Monthly Precipitation | ||||||||||
r2 | NS | NS | 0.36 | 0.49 | 0.31 | NS | 0.33 | NS | NS | 0.54 |
Slope | NS | NS | 9.62 | 9.53 | −8.01 | NS | −9.79 | NS | NS | −7.52 |
y-Intercept | NS | NS | 2793 | 2623 | 2687 | NS | 3025 | NS | NS | 2823 |
(d) Monthly Temperature | ||||||||||
r2 | NS | 0.70 | NS | 0.39 | NS | NS | NS | NS | NS | NS |
Slope | NS | −0.44 | NS | −0.27 | NS | NS | NS | NS | NS | NS |
y-Intercept | NS | 3376 | NS | 2158 | NS | NS | NS | NS | NS | NS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassnacht, S.R.; Venable, N.B.H.; McGrath, D.; Patterson, G.G. Sub-Seasonal Snowpack Trends in the Rocky Mountain National Park Area, Colorado, USA. Water 2018, 10, 562. https://doi.org/10.3390/w10050562
Fassnacht SR, Venable NBH, McGrath D, Patterson GG. Sub-Seasonal Snowpack Trends in the Rocky Mountain National Park Area, Colorado, USA. Water. 2018; 10(5):562. https://doi.org/10.3390/w10050562
Chicago/Turabian StyleFassnacht, Steven R., Niah B.H. Venable, Daniel McGrath, and Glenn G. Patterson. 2018. "Sub-Seasonal Snowpack Trends in the Rocky Mountain National Park Area, Colorado, USA" Water 10, no. 5: 562. https://doi.org/10.3390/w10050562
APA StyleFassnacht, S. R., Venable, N. B. H., McGrath, D., & Patterson, G. G. (2018). Sub-Seasonal Snowpack Trends in the Rocky Mountain National Park Area, Colorado, USA. Water, 10(5), 562. https://doi.org/10.3390/w10050562