Optimizing Re-Chlorination Injection Points for Water Supply Networks Using Harmony Search Algorithm
Abstract
:1. Introduction
2. Problem Statements
2.1. Case Study Network 1
2.1.1. Network Description
2.1.2. Future Condition
2.2. Case Study Network 2
3. Model Formulation and Construction
3.1. Objective Function and Constraints
3.2. Harmony Search Algorithm for Solution Scheme Determination
Algorithm 1 Pseudo-code for Harmony Search Algorithm (has) |
Start Objective function f(M), M = (M1, M2, …, Mn)T (Mi is the disinfectant mass at node i, see Equation (1)) Generate initial harmonies (real number arrays candidate solution vectors) Define pitch adjusting rate (PAR), pitch limits (allowable disinfectant mass), and bandwidth (BW) Define harmony memory considering rate (HMCR) while (t < Max number of iterations) Generate new harmonics by accepting the best harmonies Adjust pitch to obtain new harmonies (solutions) if (rand > HMCR), choose an existing harmony randomly else if (rand < PAR), adjust the pitch randomly within the limits else generate new harmonies via randomization end if Calculate objective function and constraints check (see Equations (2)–(5)) of new harmonies Accept the new harmonies (solutions) if better end while Find the best current solution End |
3.3. Optimization Scheme and Flowchart
4. Application Results
4.1. Applied Data and Scenarios
4.2. Sensitivity Analysis of Parameters
4.3. Application Results
4.3.1. Case Study Network 1
4.3.2. Case Study Network 2
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kanakoudis, V.; Tsitsifli, S. Socially fair domestic water pricing: Who is going to pay for the non-revenue water? Desalination Water Treat. 2016, 57, 11599–11609. [Google Scholar] [CrossRef]
- Tsitsifli, S.; Gonelas, K.; Papadopoulou, A.; Kanakoudis, V.; Kouziakis, C.; Lappos, S. Socially fair drinking water pricing considering the Full Water Cost recovery principle and the Non-Revenue Water related cost allocation to the end users. Desalination Water Treat. 2017, 99, 72–82. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Safe Piped Water: Managing Microbial Water Quality in Piped Distribution Systems; Ainsworth, R., Ed.; IWA Publishing: London, UK, 2004. [Google Scholar]
- Payment, P.; Robertson, W. The microbiology of piped distribution systems and public health. In Safe Piped Water: Managing Microbial Water Quality in Piped Distribution Systems; IWA Publishing: London, UK, 2004; pp. 1–18. [Google Scholar]
- Gonelas, K.; Chondronasios, A.; Kanakoudis, V.; Patelis, M.; Korkana, P. Forming DMAs in a water distribution network considering the operating pressure and the chlorine residual concentration as the design parameters. J. Hydroinform. 2017, 19, 900–910. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tsitsifli, S. Potable water security assessment—A review on monitoring, modelling and optimization techniques, applied to water distribution networks. Desalination Water Treat. 2017, 99, 18–26. [Google Scholar] [CrossRef]
- Boccelli, D.L.; Tryby, M.E.; Uber, J.G.; Rossman, L.A.; Zierolf, M.L.; Polycarpou, M.M. Optimal scheduling of booster disinfection in water distribution systems. J. Water Resour. Plan. Manag. 1998, 124, 99–111. [Google Scholar] [CrossRef]
- Munavalli, G.R.; Kumar, M.M. Optimal scheduling of multiple chlorine sources in water distribution systems. J. Water Resour. Plan. Manag. 2003, 129, 493–504. [Google Scholar] [CrossRef]
- Tryby, M.E.; Boccelli, D.L.; Uber, J.G.; Rossman, L.A. Facility location model for booster disinfection of water supply networks. J. Water Resour. Plan. Manag. 2002, 128, 322–333. [Google Scholar] [CrossRef]
- Lansey, K.; Pasha, F.; Pool, S.; Elshorbagy, W.; Uber, J.G. Locating satellite booster disinfectant stations. J. Water Resour. Plan. Manag. 2007, 133, 372–376. [Google Scholar] [CrossRef]
- Propato, M.; Uber, J.G. Linear least-squares formulation for operation of booster disinfection systems. J. Water Resour. Plan. Manag. 2003, 130, 53–62. [Google Scholar] [CrossRef]
- Ostfeld, A.; Salomons, E. Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems. Eng. Optim. 2006, 38, 337–352. [Google Scholar] [CrossRef]
- Prasad, T.D.; Walters, G.A.; Savic, D.A. Booster disinfection of water supply networks: Multiobjective approach. J. Water Resour. Plan. Manag. 2004, 130, 367–376. [Google Scholar] [CrossRef]
- Islam, N.; Sadiq, R.; Rodriguez, M.J. Optimizing booster chlorination in water distribution networks: A water quality index approach. Environ. Monit. Assess. 2013, 185, 8035–8050. [Google Scholar] [CrossRef] [PubMed]
- Behzadian, K.; Alimohammadnejad, M.; Ardeshir, A.; Jalilsani, F.; Vasheghani, H. A novel approach for water quality management in water distribution systems by multi-objective booster chlorination. Int. J. Civ. Eng. 2012, 10, 51–60. [Google Scholar]
- Shang, F.; Uber, J.G.; Rossman, L. EPANET Multi-Species Extension Software and User’s Manual; EPA/600/C-10/002; US Environmental Protection Agency: Washington, DC, USA, 2008.
- Karadirek, I.E.; Kara, S.; Muhammetoglu, A.; Muhammetoglu, H.; Soyupak, S. Management of chlorine dosing rates in urban water distribution networks using online continuous monitoring and modeling. Urban Water J. 2016, 13, 345–359. [Google Scholar] [CrossRef]
- Lambert, A. Assessing non-revenue water and its components: A practical approach. In THE IWA WATER LOSS TASK FORCE Water 21—Article No 2. Water 21; IWA Publishing: London, UK, 2003; pp. 51–52. [Google Scholar]
- Ministry of Environment (MOE). Water Supply Statistics. Republic of Korea in 2012; Ministry of Environment (MOE): Sejong-si, Korea, 2013.
- Korea Water Works Association (KWWA). Standards for Water Supply Facilities; Korea Water Works Association (KWWA): Seoul, Korea, 2010. [Google Scholar]
- Rossman, L. EPANET User’s Manual; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2000.
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Kim, J.H.; Geem, Z.W.; Kim, E.S. Parameter estimation of the nonlinear Muskingum model using harmony search. J. Am. Water Resour. Assoc. 2001, 37, 1131–1138. [Google Scholar] [CrossRef]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Harmony_search (accessed on 1 March 2018).
- Yang, X.S. Harmony search as a metaheuristic algorithm. In Music-Inspired Harmony Search Algorithm; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–14. [Google Scholar]
- Carrico, B.; Singer, P.C. Impact of booster chlorination on chlorine decay and THM production: Simulated analysis. J. Environ. Eng. 2009, 135, 928–935. [Google Scholar] [CrossRef]
- Huang, J.J.; McBean, E.A. Using Bayesian statistics to estimate the coefficients of a two-component second-order chlorine bulk decay model for a water distribution system. Water Res. 2007, 41, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Courtis, B.J.; West, J.R.; Bridgeman, J. Chlorine demand-based predictive modeling of THM formation in water distribution networks. Urban Water J. 2009, 6, 407–415. [Google Scholar] [CrossRef]
- Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126. [Google Scholar] [CrossRef]
- Tamminen, S.; Ramos, H.; Covas, D. Water supply system performance for different pipe materials Part I: Water quality analysis. Water Resour. Manag. 2008, 22, 1579–1607. [Google Scholar] [CrossRef]
- K-Water. Technical Support Report for Re-chlorination; K-Water: Deajeon, Korea, 2010. [Google Scholar]
- Al-Jasser, A.O. Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect. Water Res. 2007, 41, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Hallam, N.B.; West, J.R.; Forster, C.F.; Powell, J.C.; Spencer, I. The decay of chlorine associated with the pipe wall in water distribution systems. Water Res. 2002, 36, 3479–3488. [Google Scholar] [CrossRef]
System Characteristics | Pressure Head (m), Node | Residual Chlorine Concentration (mg/L), Node |
---|---|---|
Min. Value | 5.89 (GD) | 0.01 (SBGI-J) |
Max. Value | 83.70 (YP-E) | 0.58 (GD) |
Average Value | 44.70 | 0.30 |
Standard Deviation | 21.10 | 0.15 |
Two Injection Points | Three Injection Points | ||||||||
Case | HMCR | PAR | Optimal Value (g/d) | Rank | Case | HMCR | PAR | Optimal Value (g/d) | Rank |
1 | 0.7 | 0.1 | 64,755.39 | 2 | 1 | 0.7 | 0.1 | 24,078.84 | 5 |
2 | 0.7 | 0.2 | 64,899.23 | 5 | 2 | 0.7 | 0.2 | 24,078.84 | 5 |
3 | 0.7 | 0.3 | 64,760.03 | 3 | 3 | 0.7 | 0.3 | 24,080.00 | 9 |
4 | 0.8 | 0.1 | 64,503.67 | 1 | 4 | 0.8 | 0.1 | 20,966.77 | 4 |
5 | 0.8 | 0.2 | 64,760.03 | 3 | 5 | 0.8 | 0.2 | 24,078.84 | 5 |
6 | 0.8 | 0.3 | 65,147.25 | 6 | 6 | 0.8 | 0.3 | 24,078.84 | 5 |
7 | 0.9 | 0.1 | 65,285.07 | 7 | 7 | 0.9 | 0.1 | 18,450.78 | 1 |
8 | 0.9 | 0.2 | 66,086.19 | 8 | 8 | 0.9 | 0.2 | 20,206.03 | 3 |
9 | 0.9 | 0.3 | 1,420,240.00 | 9 | 9 | 0.9 | 0.3 | 20,201.39 | 2 |
Four Injection Points | Rank Aggregation | ||||||||
Case | HMCR | PAR | Optimal Value (g/d) | Rank | Case | HMCR | PAR | Sum Rank | Total Rank |
1 | 0.7 | 0.1 | 19,092.92 | 3 | 1 | 0.7 | 0.1 | 10 | 1st |
2 | 0.7 | 0.2 | 19,092.92 | 3 | 2 | 0.7 | 0.2 | 13 | 4th |
3 | 0.7 | 0.3 | 19,378.27 | 9 | 3 | 0.7 | 0.3 | 21 | 9th |
4 | 0.8 | 0.1 | 19,096.08 | 6 | 4 | 0.8 | 0.1 | 11 | 2nd |
5 | 0.8 | 0.2 | 19,375.11 | 8 | 5 | 0.8 | 0.2 | 16 | 7th |
6 | 0.8 | 0.3 | 19,094.08 | 5 | 6 | 0.8 | 0.3 | 16 | 7th |
7 | 0.9 | 0.1 | 19,232.18 | 7 | 7 | 0.9 | 0.1 | 15 | 6th |
8 | 0.9 | 0.2 | 11,824.08 | 1 | 8 | 0.9 | 0.2 | 12 | 3rd |
9 | 0.9 | 0.3 | 13,381.08 | 2 | 9 | 0.9 | 0.3 | 13 | 4th |
Node | Optimal Results (P-City, Network 1) | |||
---|---|---|---|---|
Scenario 1 (2 Points) | Scenario 2 (3 Points) | Scenario 3 (4 Points) | ||
Total Injection Mass (kg/d) | 64.76 | 24.08 | 19.90 | |
Residual Chlorine (mg/L) | Min. | 0.40 | 0.45 | 0.43 |
Max. | 3.80 | 3.64 | 3.58 | |
Average | 1.96 | 1.06 | 1.02 | |
Standard Deviation | 1.03 | 0.62 | 0.57 |
Index (Algorithms) | Total Injection Mass (kg/d) | ||
---|---|---|---|
Injection Points | 2 | 3 | 4 |
Harmony Search Algorithm (HSA) | 64.76 | 24.08 | 19.90 |
Genetic Algorithm (GA) | 66.51 | 24.08 | 20.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, D.G.; Lee, S.M.; Lee, H.M.; Choi, Y.H.; Kim, J.H. Optimizing Re-Chlorination Injection Points for Water Supply Networks Using Harmony Search Algorithm. Water 2018, 10, 547. https://doi.org/10.3390/w10050547
Yoo DG, Lee SM, Lee HM, Choi YH, Kim JH. Optimizing Re-Chlorination Injection Points for Water Supply Networks Using Harmony Search Algorithm. Water. 2018; 10(5):547. https://doi.org/10.3390/w10050547
Chicago/Turabian StyleYoo, Do Guen, Sang Myoung Lee, Ho Min Lee, Young Hwan Choi, and Joong Hoon Kim. 2018. "Optimizing Re-Chlorination Injection Points for Water Supply Networks Using Harmony Search Algorithm" Water 10, no. 5: 547. https://doi.org/10.3390/w10050547
APA StyleYoo, D. G., Lee, S. M., Lee, H. M., Choi, Y. H., & Kim, J. H. (2018). Optimizing Re-Chlorination Injection Points for Water Supply Networks Using Harmony Search Algorithm. Water, 10(5), 547. https://doi.org/10.3390/w10050547