Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation Waters in Selected Urban Farms in Metro Manila, Philippines
Abstract
:1. Introduction
2. Materials and Method
2.1. Bacterial Isolates
2.2. Antibiotic Susceptibility Test
2.3. Screening for ESBL Production
2.4. Detection of ESBL Genes
2.5. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance
3.2. Initial Screening for ESBL Production
3.3. Confirmatory Testing for ESBL Production
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Steele, M.; Odumeru, J. Irrigation water as source of foodborne pathogens on fruit and vegetables. J. Food Prot. 2004, 67, 2839–2849. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.C.B.; Dimasupil, M.A.Z.; Vital, P.G.; Widmer, K.W.; Rivera, W.L. Fecal contamination in irrigation water and microbial quality of vegetable primary production in urban farms of Metro Manila, Philippines. J. Environ. Sci. Health Part B 2015, 50, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations World Health Organization. Microbiological Hazards in Fresh Fruits and Vegetables—Microbiological Risks Assessment Series; Pre-Publication Version; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Holvoet, K.; Sampers, I.; Callens, B.; Dewulf, J.; Uyttendaele, M. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water and soil. Appl. Environ. Microbiol. 2013, 79, 6677–6683. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, R.A.; Shelton, D.R.; Van Kessel, J.A.S.; Karns, J.S.; Stocker, M.D.; Pachepsky, Y.A. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria. Environ. Monit. Assess. 2015, 188, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B. Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother. 2002, 49, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infect. Drug Resist. 2014, 7, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, S.E. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 2006, 42, S82–S89. [Google Scholar] [CrossRef] [PubMed]
- Tissera, S.; Lee, S.M. Isolation of Extended Spectrum β-lactamase (ESBL) Producing Bacteria from Urban Surface Waters in Malaysia. Malays. J. Med. Sci. 2013, 20, 14–22. [Google Scholar] [PubMed]
- Lucena, M.A.H.; Metillo, E.B.; Oclarit, J.M. Prevalence of CTX-M Extended Spectrum β-lactamase-producing Enterobacteriaceae at a Private Tertiary Hospital in Southern Philippines. Philipp. J. Sci. 2012, 141, 117–121. [Google Scholar]
- Cruz, M.C.; Bacani, C.S.; Mendoza, A.B.; Hedreyda, C.T. Evaluation of extended-spectrum beta-lactamase production in Escherichia coli clinical isolates from three hospitals in Luzon, Philippines. Philipp. Sci. Lett. 2014, 7, 438–444. [Google Scholar]
- Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol. 2003, 43, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.J.; Micalizzi, G.B.; Graham, G.M.; Bates, J.B.; Costanzo, S.D. Antibiotic-resistant Escherichia coli in wastewaters, surface waters, and oysters from an urban riverine system. Appl. Environ. Microbiol. 2007, 73, 5667–5670. [Google Scholar] [CrossRef] [PubMed]
- Borjesson, S. Antibiotic Resistance in Wastewater: Methicillin-Resistant Staphylococcus Aureus (MRSA) and Antibiotic Resistance Genes; LiU-Tryck: Linköping, Sweden, 2009; ISBN 978-91-7393-629-3. [Google Scholar]
- Amaya, E.; Reyes, D.; Paniagua, M.; Calderon, S.; Rashid, M.U.; Colque, P.; Kuhn, I.; Mollby, R.; Weintraub, A.; Nord, C.E. Antibiotic resistance patterns of Escherichia coli isolates from different aquatic environmental sources in Leon, Nicaragua. Clin. Microbiol. Infect. 2012, 18, E347–E354. [Google Scholar] [CrossRef] [PubMed]
- Carey, D.E.; McNamara, P.J. The impact of triclosan on the spread of antibiotic resistance in the environment. Front. Microbiol. 2014, 5, 780. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Ogo, M.; Miller, T.W.; Shimizu, A.; Takada, H.; Siringan, M.A.T. Who possesses drug resistance genes in the aquatic environment?: Sulfamethoxazole (smx) resistance genes among the bacterial community in water environment of Metro Manila, Philippines. Front. Microbiol. 2013, 4, 102. [Google Scholar] [CrossRef] [PubMed]
- Campilan, D.; Boncodin, R.; de Guzman, C. Multi-Sectoral Initiatives for Urban Agriculture in Metro Manila, Philippines CIP Program Report 1999–2000; International Potato Center: Lima, Peru, 2001. [Google Scholar]
- Coyle, M.B. Antimicrobial Susceptibility Testing; Manual; American Society for Microbiology Press: Washington, DC, USA, 2005. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2012; p. 188. [Google Scholar]
- Jarlier, V.; Nicolas, M.H.; Fournier, G.; Philippon, A. Extended Broad-Spectrum β-Lactamases Conferring Transferable Resistance to Newer β-Lactam Agents in Enterobacteriaceae: Hospital Prevalence and Susceptibility Patterns. Rev. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Dallenne, C.; Da Costa, A.; Decre, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kimura, B.; Tanaka, Y.; Shinozaki, J.; Suda, T.; Fujii, T. Real-time PCR and enrichment culture for sensitive detection and enumeration of Escherichia coli. J. Microbiol. Methods 2009, 79, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Roe, M.T.; Vega, E.; Pillai, S.D. Antimicrobial resistance markers of class 1 and class 2 integron-bearing Escherichia coli from irrigation water and sediments. Emerg. Infect. Dis. 2003, 9, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Chigor, V.N.; Umoh, V.J.; Smith, S.I.; Igbinosa, E.O.; Okoh, A.I. Multidrug resistance and plasmid patterns of Escherichia coli O157 and other E. coli isolated from diarrhoeal stools and surface waters from some selected sources in Zaria, Nigeria. Int. J. Environ. Res. Public Health 2010, 7, 3831–3841. [Google Scholar] [CrossRef] [PubMed]
- Ramirez Castillo, F.Y.; Avelar Gonzalez, F.J.; Garneau, P.; Márquez Díaz, F.; Guerrero Barrera, A.L.; Harel, J. Presence of multidrug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico. Front. Microbiol. 2013, 4, 147. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, C.; Romanis, M.; Huisamen, N.; Carinus, A.; Schoeman, N.; Gunnar, O.S.; Trevor, J.B. Escherichia coli with virulence factors and multidrug resistance in the Plankenburg River. S. Afr. J. Sci. 2014, 110, 1–6. [Google Scholar] [CrossRef]
- Njage, P.M.K.; Buys, E.M. Pathogenic and commensal Escherichia coli from irrigation water show potential in transmission of extended spectrum and Ampc β-lactamases determinants to isolates from lettuce. Microb. Biotechnol. 2015, 8, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Paraoan, C.E.M.; Rivera, W.L.; Vital, P.G. Detection of Class I and II integrons for the assessment of antibiotic and multidrug resistance among Escherichia coli isolates from agricultural irrigation waters in Bulacan, Philippines. J. Environ. Sci. Health Part B 2017, 52, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Shakya, P.; Barrett, P.; Diwan, V.; Marothi, Y.; Shah, H.; Chhari, N.; Tamhankar, A.J.; Pathak, A.; Lundborg, C.S. Antibiotic resistance among Escherichia coli isolates from stool samples of children aged 3 to 14 years from Ujjain, India. BMC Infect. Dis. 2013, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Marti, E.; Variatza, E.; Balcazar, J.L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trend Microbiol. 2013, 22, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.N. Poorly absorbed antibiotics for the treatment of traveler’ diarrhea. Clin. Infect. Dis. 2005, 41, S564–S570. [Google Scholar] [CrossRef] [PubMed]
- Diwan, V.; Tamhankar, A.J.; Khandal, R.K.; Sen, S.; Aggarwal, M.; Marothi, Y.; Iyer, R.V.; Sundblad-Tonderski, K.; Stalsby-Lundborg, C. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 2010, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mao, D.; Mu, Q.; Luo, Y. Enhanced horizontal transfer of antibiotic resistance genes in freshwater microcosms induced by an ionic liquid. PLoS ONE 2015, 10, e0126784. [Google Scholar] [CrossRef] [PubMed]
- UN Center for Human Settlements. Guidelines for Settlement Planning in Areas Prone to Flood Disasters; United Nations Center for Human Settlements: Nairobi, Kenya, 1995. [Google Scholar]
- Sela, S.; Manulis-Sasson, S. What else can we do to mitigate contamination of fresh produce by foodborne pathogens? Microb. Biotechnol. 2015, 8, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Canton, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, P.M. Prevalence and clonality of extended-spectrum β-lactamases in Asia. Clin. Microbiol. Infect. 2008, 14, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, E.C.; Rodriguez, R.D. First report on the occurrence of SHV-12 extended-spectrum beta-lactamase-producing Enterobacteriaceae in the Philippines. J. Microbiol. Immunol. Infect. 2009, 42, 74–85. [Google Scholar] [PubMed]
- Tian, G.; Garcia, J.; Adams-Haduch, J.M.; Evangelista, J.P.; Destura, R.V.; Wang, H.; Doi, Y. CTX-M as the predominant extended-spectrum β-lactamases among Enterobacteriaceae in Manila, Philippines. J. Antimicrob. Chemother. 2010, 65, 584–586. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, H.; Navarro, R.B.; Yano, H.; Sombrero, L.T.; Capeding, M.R.Z.; Lupisan, S.P.; Olveda, R.M.; Arai, K.; Kunishima, H.; Hirakata, Y.; et al. Molecular characteristics of extended-spectrum β-lactamases in clinical isolates of Enterobacteriaceae from the Philippines. Acta Trop. 2011, 120, 140–145. [Google Scholar] [CrossRef] [PubMed]
Antibiotic (µg) | Resistance Breakpoint (mm) | Water n = 147 | Soil n = 39 | Vegetables n = 26 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S | I | R | S | I | R | S | I | R | ||
Tetracycline (30) | ≤14 | 53.7 | 0.7 | 45.6 | 69.2 | 0.0 | 30.8 | 57.7 | 0.0 | 42.3 |
Ciprofloxacin (5) | ≤15 | 87.1 | 6.1 | 6.8 | 97.4 | 0.0 | 2.6 | 92.3 | 3.8 | 3.8 |
Cefotaxime (30) | ≤22 | 84.4 | 2.0 | 13.6 | 94.9 | 0.0 | 5.1 | 96.2 | 0.0 | 3.8 |
Chloramphenicol (30) | ≤12 | 70.7 | 12.9 | 16.3 | 94.9 | 0.0 | 5.1 | 92.3 | 3.8 | 3.8 |
Nalidixic acid (30) | ≤13 | 90.5 | 6.8 | 2.7 | 92.3 | 5.1 | 2.6 | 92.3 | 7.7 | 0.0 |
Streptomycin (10) | ≤11 | 77.6 | 9.5 | 12.9 | 87.2 | 5.1 | 7.7 | 88.5 | 11.5 | 0.0 |
Ampicillin (10) | ≤13 | 66.0 | 0.0 | 34.0 | 64.1 | 2.6 | 33.3 | 65.4 | 0.0 | 34.6 |
Cephalothin (30) | ≤14 | 70.1 | 20.4 | 9.5 | 76.9 | 10.3 | 12.8 | 65.4 | 23.1 | 11.5 |
Trimethoprim(30) | ≤10 | 79.6 | 0.0 | 20.4 | 84.6 | 0.0 | 15.4 | 80.8 | 0.0 | 19.2 |
Number of Antibiotics to Which Isolates are Resistant | Water n = 147 | Soil n = 39 | Vegetables n = 26 |
---|---|---|---|
3 | 10.89 | 0.7 | 7.7 |
4 | 7.5 | 0.7 | 0.7 |
5 | 4.8 | 1.4 | 0.0 |
6 | 1.4 | 0.0 | 0.0 |
8 | 0.7 | 0.0 | 0.0 |
Total | 25.3 | 2.8 | 8.4 |
Source | Number of Antibiotic to Which Isolates Are Resistant | Antibiotic Resistance Pattern | Frequency |
---|---|---|---|
Water n = 147 | 0 | - | 48 |
1 | Amp; Na; S; T; Tmp | 8; 3; 2; 19; 3 | |
2 | Amp-Kf; Amp-Tmp; S-Tmp; T-Amp; T-C; T-Na; T-Tmp | 5; 3; 2; 6; 5; 2; 3 | |
3 | Cip-Na-Amp; Cip-Na-S; S-Amp-Tmp; T-Amp-Kf, T-Amp-Tmp; T-C-Amp; T-Cip-Amp; T-C-Na; T-C-Tmp; T-Na-Amp; T-S-Amp | 1; 1; 1; 2; 2; 2; 1; 3; 1; 1; 1 | |
4 | Cip-C-Na-Amp; T-Cip-C-Tmp; T-C-S-Amp; T-Na-Amp-Kf; T-Na-S-Amp; T-Na-S-Tmp; T-S-Amp-Tmp | 1; 1; 1; 1; 1; 1; 5 | |
5 | Na-S-Amp-Kf-Tmp; T-Cip-C-Na-Ctx; T-Cip-C-Na-Tmp; T-Cip-Na-Amp-Kf; T-C-Na-Amp-Tmp; T-Ctx-Amp-Kf-Tmp; T-S-Amp-Kf-Tmp | 1; 1; 1; 1; 1; 1; 1 | |
6 | Cip-Na-Ctx-Amp-Kf-Tmp; T-C-Na-S-Amp-Tmp | 1; 1 | |
8 | T-C-Na-Ctx-S-Amp-Kf-Tmp | 1 | |
Soil n = 39 | 0 | - | 17 |
1 | Amp; Ctx; S; T; Tmp | 2; 1; 1; 3; 1 | |
2 | Amp-Kf; Amp-Tmp; T-Amp; T-Tmp | 3; 1; 4; 2 | |
3 | T-Cip-Na | 1 | |
4 | S-Amp-Kf-Tmp | 1 | |
5 | T-C-Amp-Kf-Tmp; T-C-Na-S-Amp | 1; 1 | |
Vegetables n = 26 | 0 | - | 10 |
1 | Kf; T | 1; 5 | |
2 | Amp-Tmp; Cip-Na; T-Amp | 2; 1; 3 | |
3 | Amp-Kf-Tmp; T-Amp-Tmp | 1; 2 | |
4 | T-C-Amp-Kf | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vital, P.G.; Zara, E.S.; Paraoan, C.E.M.; Dimasupil, M.A.Z.; Abello, J.J.M.; Santos, I.T.G.; Rivera, W.L. Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation Waters in Selected Urban Farms in Metro Manila, Philippines. Water 2018, 10, 548. https://doi.org/10.3390/w10050548
Vital PG, Zara ES, Paraoan CEM, Dimasupil MAZ, Abello JJM, Santos ITG, Rivera WL. Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation Waters in Selected Urban Farms in Metro Manila, Philippines. Water. 2018; 10(5):548. https://doi.org/10.3390/w10050548
Chicago/Turabian StyleVital, Pierangeli G., Enrico S. Zara, Cielo Emar M. Paraoan, Ma. Angela Z. Dimasupil, Joseth Jermaine M. Abello, Iñigo Teodoro G. Santos, and Windell L. Rivera. 2018. "Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation Waters in Selected Urban Farms in Metro Manila, Philippines" Water 10, no. 5: 548. https://doi.org/10.3390/w10050548
APA StyleVital, P. G., Zara, E. S., Paraoan, C. E. M., Dimasupil, M. A. Z., Abello, J. J. M., Santos, I. T. G., & Rivera, W. L. (2018). Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation Waters in Selected Urban Farms in Metro Manila, Philippines. Water, 10(5), 548. https://doi.org/10.3390/w10050548