Simulation of Soil Water Content in Mediterranean Ecosystems by Biogeochemical and Remote Sensing Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
- Barbialla (43.5917° N, 10.8486° E) is situated in a gently sloped terraced area, at 135 m. The mean annual rainfall is 810 mm and the mean annual temperature is around 15.1 °C. The coolest months are January and February (6.0 °C), while the hottest is August (25.1 °C). The vegetation cover is quite homogeneous (over 2 ha) and is dominated by hornbeam (Ostrya carpinifolia Scop.), poplar (Populus alba L.), and various oaks (Quercus cerris L., Q. pubescens L., Q. ilex L.). The soil surface is covered by native herbaceous vegetation and a few small shrub communities, among which are Cornus mas, C. sanguinea, and Crataegus monogyna. Soil is over 1 m deep, prevalently sandy, and has a field capacity of around 0.32 cm3 cm−3 (Table 2) [16,17].
- Amiata (42.9344° N, 11.6251° E) is situated in the south of Tuscany. The area is dominated by the presence of an ancient volcano; the altitude of the test site is about 758 m. The mean annual rainfall is about 800 mm and mean temperature is 12.4 °C. Summer is characterized by water shortage which, however, is not marked due to the site elevation. The whole area is quite homogeneous (over 5 ha) and is dominated by a coniferous forest (mostly Pinus nigra Arnold), with the marginal presence of some deciduous species (Quercus pubescens, Q. cerris, Q. ilex, etc.). Soil has a depth to bedrock of 0.7 m deep, is dominated by silt, and has a field capacity around 0.39 cm3 cm−3 (Table 2) [18].
- The third site is located within a small agricultural area close to the Urban Park of Cascine (43.7854° N, 11.2183° E) in Firenze. The area is flat, with an altitude of about 40 m. The annual rainfall is about 810 mm and the mean annual temperature 15.7 °C; rainfall is mostly distributed during autumn and spring, while summer is usually dry. The fields are small (below 0.2 ha) and mostly covered by grasslands and annual crops (mainly vegetables), surrounded by some vineyards and olive groves (Figure 2). The soil is sandy and very deep; no information is available on field capacity (Table 2).
2.2. Models Applied
2.2.1. BIOME-BGC
2.2.2. NDVI-Cws Method to Simulate SWC
2.3. Data Utilized
2.4. Data Processing
3. Results
3.1. Barbialla Site
3.2. Amiata Site
3.3. Cascine Site
4. Discussion
4.1. Reference and Input Data Sets
4.2. BIOME-BGC
4.3. NDVI-Based SWC Simulation Approach
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Anderson, R.G.; Jin, Y.; Goulden, M.L. Assessing regional evapotranspiration and water balance across a Mediterranean montane climate gradient. Agric. For. Meteorol. 2012, 166–167, 10–22. [Google Scholar] [CrossRef]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E.; Fritsch, J.-M.; Ardoin-Bardin, S.; Thivet, G. Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrol. Sci. J. 2013, 58, 498–518. [Google Scholar] [CrossRef]
- Bittelli, M. Measuring soil water content: A review. HortTechnology 2011, 21, 293–300. [Google Scholar]
- Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Waring, H.R.; Running, S.W. Forest Ecosystems, Analysis at Multiples Scales, 3rd ed.; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]
- Bellot, J.; Chirino, E. Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas. Ecol. Model. 2013, 266, 30–41. [Google Scholar] [CrossRef]
- Thornton, P.E.; Law, B.E.; Gholz, H.L.; Clark, K.L.; Falge, E.; Ellsworth, D.S.; Goldstein, A.H.; Monson, R.K.; Hollinger, D.; Falk, M.; et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleafs forests. Agric. For. Meteorol. 2002, 113, 185–222. [Google Scholar] [CrossRef]
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Ruisi, R.; Dechambre, M.; Valentin, R.; Chanzy, A.; Wigneron, J.P. Active and passive microwave measurements for the characterization of soils and crops. Agronomie 2002, 22, 581–586. [Google Scholar] [CrossRef]
- Wang, L.L. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Moreno, A.; Gilabert, M.A.; Camacho, F.; Martínez, B. Validation of daily global solar irradiation images 667 from MSG over Spain. Renew. Energy 2013, 60, 332–342. [Google Scholar] [CrossRef]
- Battista, P.; Chiesi, M.; Rapi, B.; Romani, M.; Cantini, C.; Giovannelli, A.; Cocozza, C.; Tognetti, R.; Maselli, F. Integration of ground and multi-resolution satellite data for predicting the water balance of a Mediterranean two-layer agro-ecosystem. Remote Sens. 2016, 8, 731. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; 300p. [Google Scholar]
- Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv. Geophys. 2010, 31, 531–555. [Google Scholar] [CrossRef]
- Maselli, F.; Chiesi, L.; Angeli, L.; Papale, D.; Seufert, G. Operational monitoring of daily evapotranspiration by the combination of MODIS NDVI and ground meteorological data: Application and evaluation in Central Italy. Remote Sens. Environ. 2014, 152, 279–290. [Google Scholar] [CrossRef]
- Salerni, E.; Iotti, M.; Leonardi, P.; Gardin, L.; D’Aguanno, M.; Perini, C.; Pacioni, P.; Zambonelli, A. Effects of soil tillage on Tuber magnatum development in natural truffières. Mycorrhiza 2013. [Google Scholar] [CrossRef] [PubMed]
- Gardin, L.; Battista, P.; Bottai, L.; Chiesi, M.; Fibbi, L.; Rapi, B.; Romani, M.; Gozzini, B.; Maselli, F. Improved simulation of soil water content by the combination of ground and remote sensing data. Eur. J. Remote Sens. 2014, 47, 739–751. [Google Scholar] [CrossRef]
- Gardin, L. I Caratteri dei Suoli delle Aree Campione del Progetto SELPIBIO-LIFE; Technical Report; SOILDATA srl, Firenze; February 2018. [Google Scholar] [CrossRef]
- Jabloun, M.; Sahli, A. Development and comparative analysis of pedotransfer functions for predicting soil water characteristic content for Tunisian soil. In Proceedings of the 7th Edition of TJASSST 2006, Sousse, Tunisia, 4–6 December 2006; pp. 170–178. [Google Scholar]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterisation and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interact. 2000, 4, 1–85. [Google Scholar] [CrossRef]
- Chiesi, M.; Maselli, F.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S.W. Application of BIOME-BGC to simulate Mediterranean forest processes. Ecol. Model. 2007, 206, 179–190. [Google Scholar] [CrossRef]
- Maselli, F.; Papale, D.; Puletti, N.; Chirici, G.; Corona, P. Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems. Remote Sens. Environ. 2009, 113, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef]
- Italian Ministry for Agricultural and Forestry Politics (MiPAF). Official Methods of Soil Chemical Analysis; Gazzetta Ufficiale Supplemento Ordinario 248; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1999. [Google Scholar]
- Thornton, P.E.; Hasenauer, H.; White, M.A. Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agric. For. Meteorol. 2000, 104, 255–271. [Google Scholar] [CrossRef]
- Maselli, F.; Argenti, G.; Chiesi, M.; Angeli, L.; Papale, D. Simulation of grassland production by the combination of ground and satellite data. Agric. Ecosyst. Environ. 2013, 165, 163–172. [Google Scholar] [CrossRef]
- Chirici, G.; Chiesi, M.; Corona, P.; Salvati, R.; Papale, D.; Fibbi, L.; Sirca, C.; Spano, D.; Duce, P.; Marras, S.; et al. Estimating daily forest carbon fluxes using the combination of ground and remotely sensed data. J. Geophys. Res. Biogeosci. 2016, 121, 266–279. [Google Scholar] [CrossRef]
- Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. ASCE 1963, 89, 15–41. [Google Scholar]
- Maselli, F. Definition of spatially variable spectral end-members by locally calibrated multivariate regression analyses. Remote Sens. Environ. 2001, 75, 29–38. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Kodešová, R.; Kodeš, V.; Mráz, A. Comparison of two sensors ECH2O EC-5 and SM200 for measuring soil water content. Soil Water Res. 2011, 6, 102–110. [Google Scholar] [CrossRef]
- Pardossi, A.; Incrocci, L.; Incrocci, G.; Malorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J. Root zone sensors for irrigation management in intensive agriculture. Sensors 2009, 9, 2809–2835. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.E.; Rosenbloom, N.A. Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol. Model. 2005, 189, 25–48. [Google Scholar] [CrossRef]
- Sanchez-Ruiz, S.; Chiesi, M.; Fibbi, L.; Carrara, A.; Maselli, F.; Gilabert, M.A. Optimized application of BIOME-BGC for modeling of daily ecosystem gross carbon uptake over peninsular Spain. J. Geophys. Res. Biogeosci. 2018, 123. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Comparison of spatiotemporal fusion models: A review. Remote Sens. 2015, 7, 1798–1835. [Google Scholar] [CrossRef]
- Maselli, F.; Chiesi, M.; Pieri, M. A novel method to produce NDVI image series with enhanced spatial properties. Eur. J. Remote Sens. 2016, 49, 171–184. [Google Scholar] [CrossRef]
- Kimball, J.S.; White, M.A.; Running, S.W. BIOME-BGC simulations of stand hydrologic processes for BOREAS. J. Geophys. Res. 1987, 102, 29043–29051. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Marjanović, H.; Sever, M.Z.O.; Dobor, L.; Gelybó, G.; Fodor, N.; Pintér, K.; Churkina, G.; Running, S.W.; et al. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: Summary of improvements and new modeling possibilities. Geosci. Model Dev. 2016, 9, 4405–4437. [Google Scholar] [CrossRef]
- Pietsch, S.A.; Hasenauer, H.; Kucera, J.; Cermak, J. Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains. Tree Physiol. 2003, 23, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.; Beven, K.; Freer, J.; Law, B. Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites. J. Geophys. Res. 2011, 116, G02008. [Google Scholar] [CrossRef]
- González-Sanchis, M.; Del Campo, A.D.; Molina, A.J.; Fernandes, T.J.G. Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation. Ecol. Model. 2015, 308, 34–44. [Google Scholar] [CrossRef]
- Tatarinov, F.A.; Cienciala, E. Long-term simulation of the effect of climate changes on the growth of main Central-European forest tree species. Ecol. Model. 2009, 220, 3081–3088. [Google Scholar] [CrossRef]
- Fibbi, L.; Chiesi, M.; Moriondo, M.; Bindi, M.; Maselli, F. Analysis and simulation of climate impacts on the GPP of Mediterranean forests. Clim. Chang. in revision.
- Gu, D.; Wang, Q.; Otieno, D. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia. Water 2017, 9, 404. [Google Scholar] [CrossRef]
- Pereira, J.S.; Mateus, J.A.; Aires, L.M.; Pita, G.; Pio, C.; David, J.S.; Andrade, V.; Banza, J.; David, T.S.; Paco, T.A.; et al. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems—The effect of drought. Biogeosciences 2007, 4, 791–802. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pinter, K.; Nagy, Z. Development of the Biome-BGC model for simulation of managed herbaceous ecosystems. Ecol. Model. 2012, 226, 99–119. [Google Scholar] [CrossRef]
Study Site | Altitude (m) | Mean Temperature (°C) | Rainfall (mm) | Ecosystem Type | Data Availability |
---|---|---|---|---|---|
Barbialla | 135 | 15.1 | 810 | Mixed forest | 2012 |
Amiata | 758 | 12.4 | 850 | Coniferous forest | 2016 |
Cascine | 40 | 15.7 | 810 | Grassland | 2012 |
Study Site | Rooting Depth (m) | Sand | Silt | Clay | Field Capacity (cm3 cm−3) | ||
---|---|---|---|---|---|---|---|
Measured | BIOME-BGC | M4 Model | |||||
Barbialla | 1.20 | 6.0 | 3.0 | 1.0 | 0.320 | 0.246 | 0.300 |
Amiata | 0.70 | 1.3 | 5.3 | 3.4 | 0.390 | 0.423 | 0.358 |
Cascine | 0.50 | 5.2 | 2.4 | 2.4 | - | 0.301 | 0.328 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battista, P.; Chiesi, M.; Fibbi, L.; Gardin, L.; Rapi, B.; Romanelli, S.; Romani, M.; Sabatini, F.; Salerni, E.; Perini, C.; et al. Simulation of Soil Water Content in Mediterranean Ecosystems by Biogeochemical and Remote Sensing Models. Water 2018, 10, 665. https://doi.org/10.3390/w10050665
Battista P, Chiesi M, Fibbi L, Gardin L, Rapi B, Romanelli S, Romani M, Sabatini F, Salerni E, Perini C, et al. Simulation of Soil Water Content in Mediterranean Ecosystems by Biogeochemical and Remote Sensing Models. Water. 2018; 10(5):665. https://doi.org/10.3390/w10050665
Chicago/Turabian StyleBattista, Piero, Marta Chiesi, Luca Fibbi, Lorenzo Gardin, Bernardo Rapi, Stefano Romanelli, Maurizio Romani, Francesco Sabatini, Elena Salerni, Claudia Perini, and et al. 2018. "Simulation of Soil Water Content in Mediterranean Ecosystems by Biogeochemical and Remote Sensing Models" Water 10, no. 5: 665. https://doi.org/10.3390/w10050665
APA StyleBattista, P., Chiesi, M., Fibbi, L., Gardin, L., Rapi, B., Romanelli, S., Romani, M., Sabatini, F., Salerni, E., Perini, C., & Maselli, F. (2018). Simulation of Soil Water Content in Mediterranean Ecosystems by Biogeochemical and Remote Sensing Models. Water, 10(5), 665. https://doi.org/10.3390/w10050665