The Influences of Riparian Vegetation on Bank Failures of a Small Meadow-Type Meandering River
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Field Sample Collection
3.2. Laboratory Analysis
4. Theoretical Foundations
5. Results
5.1. Characteristics of Vegetation, Its Roots, Soil, and River
5.2. Impact of Plant Roots on Bank Failure
5.3. Predicted Width of the Failed Blocks
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thorne, C.R.; Tovey, N.K. Stability of composite river banks. Earth Surf. Process. Landf. 1981, 6, 469–484. [Google Scholar] [CrossRef]
- Hickin, E.J. Vegetation and river channel dynamics. Can. Geogr. 1984, 28, 111–126. [Google Scholar] [CrossRef]
- Abernethy, B.; Rutherfurd, I.D. Where along a river’s length will vegetation most effectively stabilise stream banks? Geomorphology 1998, 23, 55–75. [Google Scholar] [CrossRef]
- Simon, A.; Curini, A.; Darby, S.E.; Langendoen, E.J. Bank and near-bank processes in an incised channel. Geomorphology 2000, 35, 193–217. [Google Scholar] [CrossRef]
- Gray, D.H.; Barker, D. Root-soil mechanics and interactions. In Riparian Vegetation and Fluvial Geomorphology; American Geophysical Union: Washington, DC, USA, 2004; pp. 113–123. [Google Scholar]
- Wiel, M.J.; Darby, S.E. A new model to analyse the impact of woody riparian vegetation on the geotechnical stability of riverbanks. Earth Surf. Process. Landf. 2007, 32, 2185–2198. [Google Scholar] [CrossRef]
- Pollen, N. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 2007, 69, 197–205. [Google Scholar] [CrossRef]
- Eaton, B.; Millar, R. Predicting gravel bed river response to environmental change: The strengths and limitations of a regime-based approach. Earth Surf. Process. Landf. 2017, 42, 994–1008. [Google Scholar] [CrossRef]
- Abernethy, B.; Rutherfurd, I.D. The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surf. Process. Landf. 2000, 25, 921–937. [Google Scholar] [CrossRef]
- Kirchner, J.W.; Micheli, L.; Farrington, J.D. Effects of Herbaceous Riparian Vegetation on Streambank Stability; University of California Water Resources Center: Berkeley, CA, USA, 1998. [Google Scholar]
- Langendoen, E.J.; Simon, A. Modeling the evolution of incised streams. II: Streambank erosion. J. Hydraul. Eng. 2008, 134, 905–915. [Google Scholar] [CrossRef]
- Perucca, E.; Camporeale, C.; Ridolfi, L. Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resour. Res. 2007, 43, W03430-1–W03430-10. [Google Scholar] [CrossRef]
- Thorne, C. Processes and mechanisms of river bank erosion. In Gravel-bed Rivers; Hey, J.B., Thorne, R.D., Eds.; John, Wiley and Sons: Chichester, UK, 1982; pp. 227–272. [Google Scholar]
- Page, K.; Nanson, G. Concave-bank benches and associated floodplain formation. Earth Surf. Process. Landf. 1982, 7, 529–543. [Google Scholar] [CrossRef]
- Huang, B.; Bai, Y.; Wan, Y. Model for dilapidation mechanism of riverbank. J. Hydraul. Eng. 2002, 33, 49–54. [Google Scholar]
- Wang, Y.G.; Kuang, S.F. Critical height of bank collapse. J. Hydraul. Eng. 2007, 38, 1158–1165. [Google Scholar]
- Osman, A.M.; Thorne, C.R. Riverbank stability analysis. I: Theory. J. Hydraul. Eng. 1988, 114, 134–150. [Google Scholar] [CrossRef]
- Wang, Y.G.; Kuang, S.F.; Su, J.L. Critical caving erosion width for cantilever failures of river bank. Int. J. Sediment Res. 2016, 31, 220–225. [Google Scholar] [CrossRef]
- Gregory, K.J.; Gurnell, A.M. Vegetation and river channel form and process. In Biogeomorphology; Basil Blackwell: Oxford, UK, 1988; pp. 11–42. [Google Scholar]
- Wynn, T.M.; Mostaghimi, S.; Burger, J.A.; Harpold, A.A.; Henderson, M.B.; Henry, L.A. Variation in root density along stream banks. J. Environ. Qual. 2004, 33, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Konsoer, K.M.; Rhoads, B.L.; Langendoen, E.J.; Best, J.L.; Ursic, M.E.; Abad, J.D.; Garcia, M.H. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 2016, 252, 80–97. [Google Scholar] [CrossRef]
- Fukuoka, S. Erosion processes of natural riverbank. In Proceedings of the 1st International Symposium on Hydraulic Measurement (CHES and IAHR), Beijing, China, 15 September 1994; pp. 222–229. [Google Scholar]
- Samadi, A.; Amiri-Tokaldany, E.; Davoudi, M.H.; Darby, S.E. Experimental and numerical investigation of the stability of overhanging riverbanks. Geomorphology 2013, 184, 1–19. [Google Scholar] [CrossRef]
- Pollen-Bankhead, N.; Simon, A. Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology 2010, 116, 353–362. [Google Scholar] [CrossRef]
- Simon, A.; Collison, A.J. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Landf. 2002, 27, 527–546. [Google Scholar] [CrossRef]
- Xia, J.Q.; Wu, B.S.; Wang, Y.P.; Zhao, S.G. An analysis of soil composition and mechanical properties of riverbanks in a braided reach of the Lower Yellow River. Chin. Sci. Bull. 2008, 53, 2400–2409. [Google Scholar] [CrossRef]
- Lin, C.Y.; Li, X.L.; Liu, K.; Xue, Z.P. Vegetation change characteristics during degradation succession in floodplain wetlands of the Yellow River Source Zone. Chin. Agric. Sci. Bull. 2016, 32, 115–119. [Google Scholar]
- Zhu, H.L.; Wang, Z.Y.; Li, Z.W. Influence of riparian meadow to the meandering rivers evolution in the yellow river source region. Yellow River 2013, 35, 41–44. [Google Scholar]
- Fu, J.T.; Hu, X.S.; Brierley, G.; Qiao, N.; Yu, Q.Q.; Lu, H.J.; Li, G.R.; Zhu, H.L. The influence of plant root system architectural properties upon the stability of loess hillslopes, Northeast Qinghai, China. J. Mt. Sci. 2016, 13, 785–801. [Google Scholar] [CrossRef]
- Li, Z.W. Fluvial Processes and Wetland Degradation Mechanism of the Sanjiangyuan Source. Ph.D. Thesis, Tsinghua University, Beijing, China, 1 November 2013. [Google Scholar]
- Wu, T.H.; McKinnell, W.P., III; Swanston, D.N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 1979, 16, 19–33. [Google Scholar] [CrossRef]
- Liu, S.W. Qinghai Flora; People’s Publishing House of Qinghai: Xining, China, 1996. [Google Scholar]
- Gray, D.H.; Leiser, A.T. Biotechnical Slope Protection and Erosion Control; Nostrand Reinhold Co.: New York, NY, USA, 2001; p. 40. [Google Scholar]
- Xia, J.Q.; Zong, Q.L.; Xu, Q.X.; Deng, C.Y. Soil properties and erosion mechanisms of composite riverbanks in lower Jingjiang reach. Adv. Water Sci. 2013, 24, 810–820. [Google Scholar]
- Juez, C.; Murillo, J.; García-Navarro, P. Numerical assessment of bed-load discharge formulations for transient flow in 1D and 2D situations. J. Hydroinform. 2013, 15, 1234–1257. [Google Scholar] [CrossRef]
- Abernethy, B.; Rutherfurd, I.D. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol. Process. 2001, 15, 63–79. [Google Scholar] [CrossRef]
- Loades, K.W.; Bengough, A.G.; Bransby, M.F.; Hallett, P.D.; Stokes, A. Planting density influence on fibrous root reinforcement of soils. Ecol. Eng. 2010, 36, 276–284. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Wang, Y.Q.; Wang, Y.J.; Zhang, H.L.; Li, Y.P.; Li, Y. Analysis of root system enhancing shear strength based on experiment and model. Rock Soil Mech. 2014, 35, 449–458. [Google Scholar]
- Zhu, J.Q.; Wang, Y.Q.; Wang, Y.J.; Zhang, H.L.; Li, Y.P.; Li, Y. An analysis on soil physical enhancement effects of root system of Pinus Tabulae formis and Acer Truncatum based on two models. Bull. Soil Water Conserv. 2015, 35, 277–282. [Google Scholar]
Species | Coverage (%) | Mean Height (cm) | Root Diameter (mm) | Root Length (cm) |
---|---|---|---|---|
Blysmus sinocompressus Tang et Wang | 16–20 | 14 | 0.79 | 62 |
Kobresia capillifolia (Decne.) C. B. Clarke | 11–14 | 26 | 0.46 | 55 |
Kobresia tibetica Maxim | 8–10 | 13 | 0.52 | 57 |
Poa annua L. | 5–8 | 47 | 0.41 | 45 |
Elymus nutans Griseb. | 4–7 | 53 | 0.49 | 47 |
Carex moorcroftii Falc. ex Boott | 4–7 | 11 | 0.55 | 68 |
Potentilla fruticosa L. | 7–9 | 28 | 1.57 | 90 |
Potentilla glabra Lodd. | 4–7 | 25 | 1.33 | 86 |
Hippophae thibetana Schlechtend. | 3–5 | 17 | 1.36 | 49 |
Polygonum viviparum L. | 8–12 | 9 | 0.29 | The root system is sparse,<22 cm |
Ligularia virgaurea Mattf | 35 | |||
Nardostachys chinensis Batal. | 8 | |||
Oxytropis ochrocephala Bunge | 6.5 | |||
Cremanthodium lineare Maxim. | 5 | |||
Geranium pylzowianum Maxim. | 6 | |||
Dxytropis coerulea | 4.5 |
Site | SRC Density ρI (kg/m3) | SRC Moisture Content (%) | Root Diameter di (m) | Particle Size (%) | Ar/As (%) | Root Tensile Strength TN (kPa) | Soil Shear Strength S0 (kPa) | |
---|---|---|---|---|---|---|---|---|
d ≤ 0.075 | 0.005 < d ≤ 0.075 | |||||||
A | 1542 | 53.09 | 5.8 × 10−4 | 65.56 | 54.79 | 0.11 | 15,480 | 4.02 |
B | 1516 | 49.88 | 6.8 × 10−4 | 81.85 | 59.86 | 0.12 | 15,240 | 5.03 |
C | 1559 | 42.78 | 8.7 × 10−4 | 79.6 | 61.22 | 0.11 | 14,920 | 3.98 |
D | 1528 | 43.69 | 11.6 × 10−4 | 68.84 | 57.44 | 0.13 | 13,530 | 3.41 |
Average | 1536 | 47.36 | 8.2 × 10−4 | 73.96 | 58.33 | 0.12 | 14,792 | 4.11 ± 0.58 |
Mean Water Depth (m) | Mean Velocity (m∙s−1) | Bottom Roughness | Channel Width (m) | Median Size (mm) | |
---|---|---|---|---|---|
Cantilever Slump Blocks | River Bed | ||||
0.59 | 1.26 | 0.025–0.03 | 6–13 | 0.018 | 9.83 |
Types | Quantity | Length (m) | Width bc (m) | Thickness d1 (m) | Primary Root Length * (m) |
---|---|---|---|---|---|
Slump block | 63 | 2.270 ± 1.06 | 0.881 ± 0.23 | 0.845 ± 0.25 | 0.571 ± 0.28 |
Critical block | 15 | 2.053 ± 1.33 | 0.799 ± 0.26 | 0.699 ± 0.18 | 0.416 ± 0.42 |
Overall | 78 | 2.228 ± 0.15 | 0.865 ± 0.06 | 0.817 ± 0.10 | 0.541 ± 0.11 |
Site | Measured Value d1 (m) | Measured Value bc (m) | Predicted bc (m) | Relative Error(%) | Calibrated bc * (m) | Relative Error (%) |
---|---|---|---|---|---|---|
A | 0.77 | 0.85 | 1.021 | 20.16 | 0.860 | 1.17 |
B | 0.66 | 0.79 | 0.989 | 25.13 | 0.832 | 5.36 |
C | 0.86 | 0.89 | 1.054 | 18.42 | 0.887 | 0.29 |
D | 0.95 | 0.93 | 1.158 | 24.53 | 0.975 | 4.84 |
Overall | 0.81 | 0.865 | 1.056 | 22.06 | 0.888 | 2.74 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Hu, X.; Li, Z.; Song, L.; Li, K.; Li, X.; Li, G. The Influences of Riparian Vegetation on Bank Failures of a Small Meadow-Type Meandering River. Water 2018, 10, 692. https://doi.org/10.3390/w10060692
Zhu H, Hu X, Li Z, Song L, Li K, Li X, Li G. The Influences of Riparian Vegetation on Bank Failures of a Small Meadow-Type Meandering River. Water. 2018; 10(6):692. https://doi.org/10.3390/w10060692
Chicago/Turabian StyleZhu, Haili, Xiasong Hu, Zhiwei Li, Lu Song, Ke Li, Xilai Li, and Guorong Li. 2018. "The Influences of Riparian Vegetation on Bank Failures of a Small Meadow-Type Meandering River" Water 10, no. 6: 692. https://doi.org/10.3390/w10060692
APA StyleZhu, H., Hu, X., Li, Z., Song, L., Li, K., Li, X., & Li, G. (2018). The Influences of Riparian Vegetation on Bank Failures of a Small Meadow-Type Meandering River. Water, 10(6), 692. https://doi.org/10.3390/w10060692