Bed Morphology around Various Solid and Flexible Grade Control Structures in an Unstable Gravel-Bed River
Abstract
:1. Introduction
2. Field Study
3. Experimental Methods
3.1. Experimental Apparatus
3.2. Structures and Bed Sediment
3.3. Experimental Groups and Procedure
3.4. Data Collection and Processing
4. Results
4.1. Bedform Features
4.2. Topography Changes
4.3. Erosion and Deposition
5. Discussion
5.1. Interactions among Structures, Water Flow and Bed Features Downstream of GCSs
5.2. Effects of GCSs on Flow Regime and Bedforms Upstream from the Structures
5.3. Effects on Structural Stability and Environment
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, R.; Fan, X. The landslide story. Nat. Geosci. 2013, 6, 325–326. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, P.; Fang, H. Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides 2013, 10, 331–342. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Nislow, K.H.; Renshaw, C.E. Flow regulation by dams. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 9, pp. 794–808. ISBN 9780080885223. [Google Scholar]
- Petts, G.; Gurnell, A. 13.7 Hydrogeomorphic effects of reservoirs, dams, and diversions. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 13, pp. 96–114. ISBN 9780080885223. [Google Scholar]
- Padmalal, D.; Maya, K. Impacts of river sand mining. In Sand Mining. Environmental Science and Engineering; Springer: Dordrecht, The Netherlands, 2014; pp. 31–56. ISBN 978-94-017-9143-4. [Google Scholar]
- Boix-Fayos, C.; Barberá, G.G.; López-Bermúdez, F.; Castillo, V.M. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain). Geomorphology 2007, 91, 103–123. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Thomas, J.T.; Culler, M.E.; Dermisis, D.C.; Pierce, C.L.; Papanicolaou, A.N.; Stewart, T.W.; Larson, C.J. Effects of grade control structures on fish passage, biological assemblages and hydraulic environments in western iowa streams: A multidisciplinary review. River Res. Appl. 2013, 29, 389–398. [Google Scholar] [CrossRef]
- Church, M.; Ferguson, R.I. Morphodynamics: Rivers beyond steady state. Water Resour. Res. 2015, 51, 1883–1897. [Google Scholar] [CrossRef] [Green Version]
- Fan, N.; Nie, R.; Wang, Q.; Liu, X. Dramatic undercutting of piedmont rivers after the 2008 Wenchuan Ms 8.0 Earthquake. Sci. Rep. 2016, 6, 37108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.H. River training. In Fluvial Processes in River Engineering; John Wiley & Sons, Inc.: New York, NY, USA, 1988; Volume 15, pp. 395–411. [Google Scholar]
- Bormann, N.E.; Julien, P.Y. Scour downstream of grade-control structures. J. Hydraul. Eng. 1991, 117, 579–594. [Google Scholar] [CrossRef]
- Lu, J.Y.; Hong, J.H.; Chang, K.P.; Lu, T.F. Evolution of scouring process downstream of grade-control structures under steady and unsteady flows. Hydrol. Process. 2013, 27, 2699–2709. [Google Scholar] [CrossRef]
- Guan, D.; Melville, B.W.; Friedrich, H. Live-bed scour at submerged weirs. J. Hydraul. Eng. 2015, 141, 04014071. [Google Scholar] [CrossRef]
- Sattar, A.M.A.; Plesiński, K.; Radecki-Pawlik, A.; Gharabaghi, B. Scour depth model for grade-control structures. J. Hydroinform. 2017, 20, 117–133. [Google Scholar] [CrossRef]
- Goel, A.; Pal, M. Application of support vector machines in scour prediction on grade-control structures. Eng. Appl. Artif. Intell. 2009, 22, 216–223. [Google Scholar] [CrossRef]
- Mojtaba, R.N.S.; Mahmood, S.B. Effects of upward seepage on depth of scour hole downstream of free falling jets under constant tail water depth. J. Water Sci. Res. 2013, 5, 31–39. [Google Scholar]
- Raborn, S.W.; Schramm, H.L. Fish assemblage response to recent mitigation of a channelized warmwater stream. River Res. Appl. 2003, 19, 289–301. [Google Scholar] [CrossRef]
- Castro, J.M.; Beavers, A. Providing aquatic organism passage in vertically unstable streams. Water 2016, 8, 133. [Google Scholar] [CrossRef]
- Lenzi, M.A.; Marion, A.; Comiti, F. Local scouring at grade-control structures in alluvial mountain rivers. Water Resour. Res. 2003, 39, 1176. [Google Scholar] [CrossRef]
- Galia, T.; Skarpich, V. Response of bed sediments on the grade-control structure management of a small piedmont stream. River Res. Appl. 2017, 33, 483–494. [Google Scholar] [CrossRef]
- Gaudio, R.; Marion, A.; Bovolin, V. Morphological effects of bed sills in degrading rivers. J. Hydraul. Res. 2000, 38, 89–96. [Google Scholar] [CrossRef]
- Lenzi, M.A.; Marion, A.; Comiti, F.; Gaudio, R. Local scouring in low and high gradient streams at bed sills. J. Hydraul. Res. 2002, 40, 731–739. [Google Scholar] [CrossRef]
- Marion, A.; Lenzi, M.A.; Comiti, F. Effect of sill spacing and sediment size grading on scouring at grade-control structures. Earth Surf. Proc. Landf. 2004, 29, 983–993. [Google Scholar] [CrossRef]
- Marion, A.; Tregnaghi, M.; Tait, S. Sediment supply and local scouring at bed sills in high-gradient streams. Water Resour. Res. 2006, 42, W06416. [Google Scholar] [CrossRef]
- Tregnaghi, M.; Marion, A.; Gaudio, R. Affinity and similarity of local scour holes at bed sills. Water Resour. Res. 2007, 43, W11417. [Google Scholar] [CrossRef]
- Meftah, M.B.; Mossa, M. Scour holes downstream of bed sills in low-gradient channels. J. Hydraul. Res. 2006, 44, 497–509. [Google Scholar] [CrossRef]
- Tregnaghi, M.; Marion, A.; Coleman, S. Scouring at bed sills as a response to flash floods. J. Hydraul. Eng. 2009, 135, 466–475. [Google Scholar] [CrossRef]
- Gaudio, R.; Marion, A. Time evolution of scouring downstream of bed sills. J. Hydraul. Res. IAHR 2003, 41, 271–284. [Google Scholar] [CrossRef]
- Zahiri, A.; Azamathulla, H.M.; Ghorbani, K. Prediction of local scour depth downstream of bed sills using soft computing models. In Computational Intelligence Techniques in Earth and Environmental Sciences; Islam, T., Srivastava, P., Gupta, M., Zhu, X., Mukherjee, S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 197–208. ISBN 978-94-017-8641-6. [Google Scholar]
- Escarameia, M.; Roca, M.; Chellew, E. Towards better design of riprap bed sills—An experimental study. Water Manag. 2015, 170, 1–12. [Google Scholar] [CrossRef]
- Roca, M.; Escarameia, M. Probabilistic design of riprap bed sills. Water Manag. 2017, 170, 1–9. [Google Scholar] [CrossRef]
- Pagliara, S.; Kurdistani, S.M.; Palermo, M.; Simoni, D. Scour due to rock sills in straight and curved horizontal channels. J. Hydro-Environ. Res. 2016, 10, 12–20. [Google Scholar] [CrossRef]
- Tang, H.W.; Ding, B.; Chiew, Y.M.; Fang, S.L. Protection of bridge piers against scouring with tetrahedral frames. Int. J. Sediment Res. 2009, 24, 385–399. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Wang, W.; Yu, T. Effects of central bar protection with tetrahedron-like penetrating frames. Procedia Eng. 2012, 28, 389–393. [Google Scholar] [CrossRef]
- Gao, Z.; Li, X.; Tang, H.; Gu, Z. Three-dimensional hydrodynamic model of concrete tetrahedral frame revetments. J. Mar. Sci. Appl. 2009, 8, 338–342. [Google Scholar] [CrossRef]
- Lu, J.Y.; Hong, J.H.; Ho, S.C. Scour protection downstream of a grade-control structure using tetrahedron frames. In Proceedings of the 33rd IAHR Congress, Vancouver, BC, Canada, 10–14 August 2009; pp. 3596–3603. [Google Scholar]
- Lu, J.Y.; Chang, T.F.; Chiew, Y.M.; Hung, S.P.; Hong, J.H. Turbulence characteristics of flows passing through a tetrahedron frame in a smooth open-channel. Adv. Water Resour. 2011, 34, 718–730. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Zhou, H.; Wang, Z.; Zhou, J.; Liang, Y. The effect of tetrahedron framed permeable weirs on river bed stability in a mountainous area under clear water conditions. Sci. Rep. 2017, 7, 4841. [Google Scholar] [CrossRef] [PubMed]
- Garde, R.J. Initiation of motion on a hydrodynamically rough surface-critical velocity approach. J. Irrig. Power 1970, 27, 271–282. [Google Scholar]
- Simons, D.B.; Richardson, E.V. Resistance to Flow in Alluvial Channels; US Government Printing Office: Washington, DC, USA, 1966; pp. 1–61.
- Engelund, F.; Fredsoe, J. Sediment ripples and dunes. Annu. Rev. Fluid Mech. 1982, 14, 13–37. [Google Scholar] [CrossRef]
- Biedenharn, D.S.; Hubbard, L.C. Design Considerations for Siting Grade Control Structures; Coastal and Hydraulics Engineering Technical Note CHETN- VII-3; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2001; Available online: http://chl.wes.army.mil/library/publications/chetn/ (accessed on 20 June 2018).
- Thomas, J.T.; Papanicolaou, A.N.; Pierce, C.L.; Dermisis, D.C.; Litvan, M.E.; Larson, C.J. Fish passage and abundance around grade control structures on incised streams. In Proceedings of the World Environmental and Water Resources Congress, Kansas City, MI, USA, 17–21 May 2009; pp. 1–10. [Google Scholar] [CrossRef]
- Ovidio, M.; Philippart, J.C. The impact of small physical obstacles on upstream movements of six species of fish. Hydrobiologia 2002, 483, 55–69. [Google Scholar] [CrossRef]
- Litvan, M.E.; Pierce, C.L.; Stewart, T.W.; Larson, C.J. Fish passage in a western Iowa stream modified by grade control structures. N. Am. J. Fish. Manag. 2008, 28, 1398–1413. [Google Scholar] [CrossRef]
- Thompson, D.M.; Stull, G.N. The development and historic use of habitat structures in channel restoration in the United States: The grand experiment in fisheries management. Géogr. Phys. Quat. 2002, 56, 45–60. [Google Scholar] [CrossRef]
- Scurlock, S.M.; Thornton, C.I.; Abt, S.R. One-dimensional modeling techniques for energy dissipation in U-weir grade-control structures. In Proceedings of the World Environmental and Water Resources Congress, Palm Springs, CA, USA, 22–26 May 2011; pp. 2496–2507. [Google Scholar] [CrossRef]
- Kang, J.; Kim, C.; Jung, S.; Yeo, H. Habitat evaluation on scour hole downflow low drop structure types using large-scale experiment. Engineering 2012, 557–567. [Google Scholar] [CrossRef]
- Salant, N.L.; Schmidt, J.C.; Budy, P.; Wilcock, P.R. Unintended consequences of restoration: Loss of riffles and gravel substrates following weir installation. J. Environ. Manag. 2012, 109, 154–163. [Google Scholar] [CrossRef] [PubMed]
Structure Type | Layout Type | Grade | Width (cm) | Height (cm) | Distance (cm) |
---|---|---|---|---|---|
No GCSs | - | - | - | - | - |
Bed sills | - | Single | 11.5 | 5.3 | - |
TFPW I | random | Single | 25 | 7.5 | - |
TFPW II | paved | Double | 25 | 7.5 | 75 |
TFPW III | random | Single | 75 | 5 | - |
Structures | Volumes of Erosion or Deposition (m3) | ||
---|---|---|---|
Upstream | Downstream | In Total | |
No GCSs | −0.003610 | −0.027177 | −0.030787 |
Bed sills | +0.003980 | −0.031265 | −0.027285 |
TFPW I | +0.016852 | +0.010932 | +0.027884 |
TFPW II | −0.028209 (+0.007842) 1 | +0.016801 | −0.011408 |
TFPW III | +0.002571 | +0.024306 | +0.026877 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-m.; Yang, X.-g.; Zhou, H.-w.; Lin, X.; Jiang, R.; Lv, E.-q. Bed Morphology around Various Solid and Flexible Grade Control Structures in an Unstable Gravel-Bed River. Water 2018, 10, 822. https://doi.org/10.3390/w10070822
Wang J-m, Yang X-g, Zhou H-w, Lin X, Jiang R, Lv E-q. Bed Morphology around Various Solid and Flexible Grade Control Structures in an Unstable Gravel-Bed River. Water. 2018; 10(7):822. https://doi.org/10.3390/w10070822
Chicago/Turabian StyleWang, Jia-mei, Xing-guo Yang, Hong-wei Zhou, Xing Lin, Rui Jiang, and En-quan Lv. 2018. "Bed Morphology around Various Solid and Flexible Grade Control Structures in an Unstable Gravel-Bed River" Water 10, no. 7: 822. https://doi.org/10.3390/w10070822
APA StyleWang, J. -m., Yang, X. -g., Zhou, H. -w., Lin, X., Jiang, R., & Lv, E. -q. (2018). Bed Morphology around Various Solid and Flexible Grade Control Structures in an Unstable Gravel-Bed River. Water, 10(7), 822. https://doi.org/10.3390/w10070822