Effects of Erosion Control Works: Case Study—Grdelica Gorge, the South Morava River (Serbia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
3.1. Analisys of Perfomed Erosion Control Works (ECW) in the Study Area
3.1.1. Transverse Structures in Torrential Streams (Check dams, Sills, and Submerged Sills)
3.1.2. Biological and Biotechnical Works
3.2. Land Use before and after ECW
3.3. Spatial Distribution of Erosion Coefficient (Z), Specific Annual Gross Erosion (W) and Specific Sediment Transport (G) before and after the Conducted ECW
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lazarević, R. The Erosion Map of Serbia. Scale 1:500,000; Institute of Forestry: Belgrade, Serbia, 1983. [Google Scholar]
- Dragićević, S.; Filipović, D.; Kostadinov, S.; Ristić, R.; Novković, I.; Živković, N.; Anđelković, G.; Abolmasov, B.; Šećerov, V.; Đurđić, S. Natural hazard assessment for land-use planning in Serbia. Int. J. Environ. Res. 2011, 5, 371–380. [Google Scholar] [CrossRef]
- Ristić, R.; Kostadinov, S.; Albomasov, B.; Dragićević, S.; Trivan, G.; Radić, B.; Trifunović, M.; Radosavljević, Z. Torrential floods and town and country planning in Serbia. Nat. Hazards Earth Syst. Sci. 2012, 12, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Petrović, A.; Kostadinov, S.; Dragićević, S. The inventory and characterisation of torrential flood phenomenonin Serbia. Pol. J. Environ. Stud. 2014, 23, 823–830. [Google Scholar]
- Braunović, S. Study of Rain Erosivity and Soil Resistance to Erosion in Belgrade Region. Master’s Thesis, University of Belgrade, Belgrade, Serbia, 1996. (In Serbian). [Google Scholar]
- Braunović, S.; Bilibajkić, S.; Ratknić, M. Calculation of rainfall erosivity factor in the region of Vranje (South-Estern Serbia). In Global Change—Challenges for Soil Management; Zlatic, M., Ed.; Advances in Geoecology, Catena Verlag: Reiskirchen, Germany, 2010; Volume 41, pp. 184–191. ISBN 978-3-923381-57-9. [Google Scholar]
- Dragićević, S.; Ristić, R.; Živković, N.; Kostadinov, S.; Tošić, R.; Novković, I.; Borisavljević, A.; Radić, Z. Floods in Serbia in 2010—Case study: The Kolubara and Pcinja river basins. In Geomorphological Impacts of Extreme Weather: Case Studies from Central and Eastern Europe, 1st ed.; Loczy, D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 155–170. ISBN 978-94-007-6301-2. [Google Scholar]
- Shen, H.; Zheng, F.; Wen, L.; Han, Y.; Hu, W. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil Tillage Res. 2016, 155, 429–436. [Google Scholar] [CrossRef]
- Kostadinov, S.; Dragićević, S.; Stefanović, T.; Novković, I.; Petrović, A. Torrential flood prevention in the Kolubara river basin. J. Mt. Sci. 2017, 14, 2230–2245. [Google Scholar] [CrossRef]
- Stefanidis, S.; Chatzichristaki, C. Response of soil erosion in a mountainous watershed to temperature and precipitation trends. Carpathian J. Earth Environ. Sci. 2017, 12, 35–39. [Google Scholar]
- Mitasova, H.J.; Hofierka, M.; Zlocha, L.; Iverson, R. Modeling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Sci. 1996, 10, 629–641. [Google Scholar] [CrossRef]
- Toy, T.; George, F.; Renard, K. Soil Erosion: Processes, Prediction, Measurement and Control; John Wiley and Sons Inc.: New York, NY, USA, 2002; p. 352. ISBN 978-0-471-38369-7. [Google Scholar]
- Bishop, M.P.; Shroder, J.F.; Colby, J.D. Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology 2003, 55, 345–361. [Google Scholar] [CrossRef]
- Manojlović, P.; Dragićević, S.; Mustafić, S. The basic morphometric characteristics of Serbian relief. Bull. Serbian Geogr. Soc. 2004, 84, 11–20. [Google Scholar] [CrossRef]
- Aalto, R.; Dunne, T.; Guyot, J. Geomorphic controls on Andean denudation rates. J. Geol. 2006, 114, 85–99. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K. A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences 2015, 5, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Kostadinov, S.; Mitrović, S. Effect of forest cover on the stream flows from small watersheds. J. Soil Water Conserv. 1994, 49, 382–386. [Google Scholar]
- Kostadinov, S. Forests in Serbia as the factor of soil and water protection against degradation in the conditions of global climate change. In Global Environmental Change: Challenges to Science and Society in Southeastern Europe; Alexandrov, V., Gajdusek, M., Knight, C., Yotova, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 177–190. ISBN 978-90-481-8694-5. [Google Scholar]
- Živković, N.; Dragićević, S.; Ristić, R.; Novković, I.; Djurdjić, S.; Luković, J.; Živković, L.; Jovanović, S. Effects of vegetation on runoff in small river basins in Serbia. Fresenius Environ. Bull. 2015, 24, 2082–2089. [Google Scholar]
- Ni, C.; Ma, T.; Zhang, X. Responses of soil erosion processes to land cover changes in the Loess Plateau of China: A case study on the Beiluo River basin. Catena 2016, 136, 118–127. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Kosmas, C.; Vanacker, V.; Van Oost, K.; Rounsevell, M.D. A Soil erosion as a driver of land use change. Agri. Ecosys. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Solaimani, K.; Modallaldoust, S.; Lotfi, S. Investigation of land use changes on soil erosion process using geographical information system. Int. J. Environ. Sci. Technol. 2009, 6, 415–424. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Poesen, J.; Navas, A.; Gaspar, L. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 2013, 102, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.C.; Aitkenhead-Peterson, J. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad. Dev. 2017, 28, 128–141. [Google Scholar] [CrossRef]
- Ozsahin, E.; Duru, U.; Eroglu, I. Land Use and Land Cover Changes (LULCC), a key to understand soil erosion intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef]
- Bini, C.; Gemignani, S.; Zilocchi, L. Effect of different land use on soil erosion in the pre-alpine fringe (North-East Italy): Ion budget and sediment yield. Sci. Total Environ. 2006, 369, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Kostadinov, S.; Dragovic, N.; Zlatic, M.; Todosijevic, M. Erosion control works and the intensity of soil erosion in the upper part of the river Toplica drainage basin. Earth Environ. Sci. 2008, 4, 012040. [Google Scholar] [CrossRef] [Green Version]
- Kostadinov, S.; Zlatić, M.; Dragićević, S.; Novković, I.; Košanin, O.; Petrović, A.; Lakićević, M.; Mlađan, D. Anthropogenic influence on erosion intensity changes in the Rasina river watershed—Central Serbia. Fresenius Environ. Bull. 2014, 23, 254–263. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Jia, Y.; Tague, C.; Slaughter, P. An eco-hydrological model-based assessment of the impacts of soil and water conservation management in the Jinghe river basin, China. Water 2015, 7, 6301–6320. [Google Scholar] [CrossRef]
- Kostadinov, S.; Košanin, O.; Petrović, A.; Dragićević, S. Extreme climate events and erosion control in headwater catchments of Serbia. In Ecosystem Services of Headwater Catchments; Kreček, J., Haigh, M., Hofer, T., Kubin, E., Promper, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 217–224. ISBN 978-3-319-57945-0. [Google Scholar]
- Borisavlјević, A.; Kostadinov, S. Integrated river basin management of Južna Morava River. Bull. Serbian Geogr. Soc. 2012, 92, 135–160. [Google Scholar] [CrossRef]
- Official Gazette of Republic of Serbia 36; Official Gazette: Belgrade, Serbia, 1954.
- Kostadinov, S.; Marković, S. Soil erosion and effects of erosion control works in the torrential watersheds in south-east Serbia. In Erosion and Sediment Yield: Global and Regional Perspectives; Walling, D.E., Webb, B.W., Eds.; IAHS Press: Walingford, UK, 1996; pp. 321–332. ISSN 0144-7815. [Google Scholar]
- Kostadinov, S.; Dragovic, N.; Zlatic, M.; Todosijevic, M. Natural effect of classical check dams in the torrents of the River Toplica drainage basin. Fresenius Environ. Bull. 2011, 20, 1102–1108. [Google Scholar]
- Petković, S. Sediment Management in the South Morava River Basin (Monograph); Faculty of Forestry: University of Belgrade, Belgrade, Serbia, 1995; p. 213. ISBN 86-7299-025-0. [Google Scholar]
- Braunović, S.; Ratknić, M. Impact of the parent rock on erosion process development in Grdelica Gorge and Vranjska Valley. Sustain. For. 2012, 65-66, 65–72. [Google Scholar]
- Braunović, S. Effects of Erosion Control Works on the State of Erosion in Grdelička Klisura and Vranjska Kotlina. Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 4 October 2013. [Google Scholar]
- Ristic, R.; Radic, B.; Vasiljevic, N. Characteristics of maximal discharges on torrential watersheds in Serbia. Bull. Serbian Geogr. Soc. 2009, 89, 161–189. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issue and semi-quantitative models. Earth-Sci. Rev 2005, 71, 95–125. [Google Scholar] [CrossRef]
- Gavrilović, S. Engineering of Torrents Flows and Erosion; Izgradnja, Special Edition: Belgrade, Serbia, 1972; p. 292. (In Serbian) [Google Scholar]
- Lazarević, R. The new method for erosion coefficient determination—Z. Erosion 1985, 13, 54–61. [Google Scholar]
- Beyer, P.N. Erosion des Bassins Versant Alpins Suisses par Ruissellement de Surface. Ph.D. Thesis, Laboratoire de Constructions Hydrauliques-LCH, No. 1815, University of Laussanne, Laussanne, Switzerland, 1998. (In French). [Google Scholar]
- Fannetti, D.; Vezzoli, L. Sediment input and evolution of lacustrine deltas: The Breggia and Greggio rivers case study (Lake Como, Italy). Quat. Int. 2007, 173–174, 113–124. [Google Scholar] [CrossRef]
- Tazioli, A. Evaluation of erosion in equipped basins: Preliminary results of a comparison between the Gavrilovic model and direct measurements of sediment transport. Environ. Geol. 2009, 56, 825–831. [Google Scholar] [CrossRef]
- Globevnik, L.; Holjević, D.; Petkovsek, G.; Rubinić, J. Applicability of the Gavrilovic method in erosion calculation using spatial data manipulation techniques. In Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques; De Boer, D., Froehlich, W., Mizuyama, T., Pietroniro, A., Eds.; IAHS Press: Walingford, UK, 2003; pp. 224–233. ISBN 1-901502-22-8. [Google Scholar]
- Petras, J.; Kuspilić, N.; Kunstek, D. Some experience on the prediction of suspended sediment concentrations and fluxes in Croatia. In Proceedings of the Symposium S6 Held during the Seventh IAHS Scientific Assembly, Foz do Igacu, Brazil, 3–9 April 2005; pp. 179–184. [Google Scholar]
- Tošić, R.; Dragićević, S. Methodology update for determination of the erosion coeffitient (Z). Bull. Serbian Geogr. Soc. 2012, 92, 11–26. [Google Scholar] [CrossRef]
- Tošić, R.; Dragićević, S.; Lovrić, N. Assessment of Soil Erosion and Sediment Yield Changes Using Erosion Potential Model—Case Study: Republic of Srpska (BiH). Carpathian J. Earth Environ. Sci. 2012, 7, 147–154. [Google Scholar]
- Tošić, R.; Lovrić, N.; Dragićević, S.; Manojlović, S. Assessment of torrential flood susceptibility using GIS Matrix Method: Case study—Vrbas river basin (B&H). Carpathian J. Earth Environ. Sci. 2018, 13, 369–382. [Google Scholar] [CrossRef]
- Blinkov, I. An approach for conversion of erosion data produced by EPM method in weight measure. In Challenges: Sustainable Land Management—Climate Change; Zlatic, M., Kostadinov, S., Eds.; Advance in Geoecology, Catena Verlag: Reiskirchen, Germany, 2014; Volume 43, pp. 109–119. ISBN 978-3-923381-61-6. [Google Scholar]
- Milevski, I.; Dragicevic, S.; Radevski, I. GIS and Remote Sensing based natural hazard modelling of Kriva River catchment, Republic of Macedonia. Z. Geomorphol. Suppl. Issues 2017, 61, 213–228. [Google Scholar] [CrossRef]
- Kalinderis, I.A.; Sapountzis, M.; Stathis, D.; Tziaftani, F.; Kourakli, P.; Stefanidis, P. The risk of sedimentation of artificial lakes, following the soil loss and degradation process in the wider drainage basin. Artificial lake of Smokovo case study (Central Greece). In Global Change—Challenges for Soil Management; Zlatic, M., Ed.; Advances in Geoecology, Catena Verlag: Reiskirchen, Germany, 2010; Volume 41, pp. 129–140. ISBN 978-3-923381-57-9. [Google Scholar]
- Kastridis, A.; Kamperidou, V. Influence of Land Use Changes on Alluviation of Volvi Lake Wetland (North Greece). Soil Water Res. 2015, 10, 121–129. [Google Scholar] [CrossRef]
- Efthimiou, N.; Lykoudi, E.; Panagoulia, D.; Karavitis, C. Assessment of soil susceptibility to erosion using the EPM and RUSLE models: The case of Venetikos River catchment. Glob. NEST J. 2016, 18, 164–179. [Google Scholar] [CrossRef]
- Meteorological and Hydrological Annual Reports—Precipitation and Surface Water; Republic Hydrometeorological Service of Serbia (RHMOS): Belgrade, Serbia, 1916–2005.
- Stefanidis, P.; Sapountzis, M.; Tziaftani, F.; Stefanidis, S. Torrent control works at the region of Peloponnese (Greece) after forest fire of 2007. In Challenges: Sustainable Land Management—Climate Change; Zlatic, M., Kostadinov, S., Eds.; Advance in Geoecology; Catena Verlag: Reiskirchen, Germany, 2014; Volume 43, pp. 148–155. ISBN 978-3-923381-61-6. [Google Scholar]
- Photo Documentation of WMO ‘Erosion’ Vladičin Han; Photo: Stevanović, D.; WMO ‘Erosion’: Vladičin Han, Serbia, 1953.
- Jelić, B. Erosion control works in South Morava River Basin in the period 1947–1977. Erosion 1978, 9, 25–42. (In Serbian) [Google Scholar]
- Zlatic, M.; Kostadinov, S.; Popovic, M.; Ristic, I. Аnalysis of Natural and Anthropogenic Factors of Erosion Processes and Effects of Erosion Control Works in the Watershed Mlakacka Dolina. In Proceedings of the International Symposion Interpraevent, Garmisch-Partenkirchen, Germany, 24–28 June 1996; pp. 213–222. [Google Scholar]
- Zhou, P.; Luukkanen, O.; Tokola, T.; Nieminen, J. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 2008, 75, 319–325. [Google Scholar] [CrossRef]
- Blinkova, O.; Lavrov, V. Study of soil water-erosion intensity and vegetation cover of an oak-spruce forest in the Pokutsko-Bukovina Carpathians, Ukraine. Arch. Biol. Sci. 2017, 69, 627–636. [Google Scholar] [CrossRef]
- Evette, A.; Labonne, S.; Rey, F.; Liebault, F.; Jancke, O.; Girel, J. History of Bioengineering Techniques for Erosion Control in Rivers in Western Europe. Environ. Manag. 2009, 43, 972. [Google Scholar] [CrossRef] [PubMed]
- Ristic, R.; Kostadinov, S.; Radic, B.; Trivan, G.; Nikic, Z. Torrential Floods in Serbia—Man Made and Natural Hazards. In Proceedings of the 12th Congress Interpraevent, Grenoble, France, 23–26 April 2012; pp. 771–779. [Google Scholar]
- Kostadinov, S. Research of Sediment Transport Regime in the Torrents of South-East and West Serbia. Doctoral Thesis, University of Belgrade, Belgrade, Serbia, 1985. (In Serbian). [Google Scholar]
- Kostadinov, S. Evaluation of Erosion and Sediment Control Works in the Repinska Reka Watershed. In Proceedings of the International Erosion Control Association (IECA) Conference 28, Nashville, TN, USA, 25–28 February 1997; pp. 385–396. [Google Scholar]
- Soljanik, I. Experimental afforestation in Grdelica Gorge. Forestry 1955, 12, 741–756. (In Serbian) [Google Scholar]
- Tucker Gilman, R.; Abell, R.; Williams, E.C. How can conservation biology inform the practice of Integrated River Basin Management? Int. J. River Basin Manag. 2004, 2, 135–148. [Google Scholar] [CrossRef]
- Dragović, N.; Vulević, T.; Todosijević, M.; Kostadinov, S.; Zlatić, M. Minimization of direct costs in the construction of torrent control structures. Tehnički Vjesnik 2017, 24, 1123–1128. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [PubMed]
- Anđelković, G.; Jovanović, S.; Manojlović, S.; Samardžić, I.; Živković, L.; Šabić, D.; Gatarić, D.; Džinović, M. Extreme Precipitation Events in Serbia: Defining the Threshold Criteria for Emergency Preparedness. Atmosphere 2018, 9, 188. [Google Scholar] [CrossRef]
No. | Precipitation Station | Coordinates | Elevation m a.s.l. | |
---|---|---|---|---|
X | Y | |||
1. | Predejane | 7593085 | 4743847 | 318 |
2. | Grdelica | 7588902 | 4751199 | 360 |
3. | Vladičin Han | 7587822 | 4728966 | 395 |
4. | Mrtvica | 7583614 | 4738172 | 560 |
5. | Mačkatica | 7598693 | 4732815 | 1060 |
6. | Kukavica | 7580930 | 4734437 | 1250 |
7. | Vlasina Rid | 7607783 | 4732042 | 1380 |
Coefficient of Soil Resistance | Y |
Fine sediments and soils without erosion resistance | 0.80–1.00 |
Sediments, moraines, clay and other rock with low resistance | 0.60–0.80 |
Weak rock, schistose, stabilised | 0.50–0.60 |
Rock with moderate erosion resistance | 0.30–0.50 |
Hard rock, erosion resistant | 0.10–0.30 |
Coefficient of Soil Protection | X |
Areas without vegetation cover | 0.08–1.00 |
Damaged pasture and cultivated land | 0.06–0.80 |
Damaged forest and bushes, pasture | 0.04–0.06 |
Coniferous forest with little grove, scarce bushes, bushy prairie | 0.20–0.40 |
Thin forest with grove | 0.05–0.20 |
Mixed and dense forest | 0.05–0.20 |
Coefficient of Erosion and Stream Network Development | φ |
Whole watershed affected by erosion | 0.90–1.00 |
50–80% of watershed area affected by surface erosion and landslides | 0.80–0.90 |
Erosion in rivers, gullies and alluvial deposits, karstic erosion | 0.60–0.70 |
Erosion in waterways on 20–50% of the watershed area | 0.30–0.50 |
Little erosion on watershed | 0.10–0.20 |
Erosion Category | Erosion Intensity | Range of Z | Range of W0 (m3/km2/Year) |
---|---|---|---|
I | Excessive erosion | 1.01–1.50 | ˃3000 |
II | Intensive erosion | 0.71–1.00 | 1200–3000 |
III | Medium erosion | 0.41–0.70 | 800–1200 |
IV | Weak erosion | 0.21–0.40 | 400–800 |
V | Very weak erosion | 0.01–0.20 | 100–400 |
Torrential Watershed | Regulations–Trenches | Transverse Structures | Biological Works | |||||
---|---|---|---|---|---|---|---|---|
Length (km) | Ditch (m3) | Wall (m3) | Number of Structures | Ditch (m3) | Wall (m3) | Afforestation (ha) | Grassing (ha) | |
GrdelicaGorge 58 tributaries | 5.96 | 70,405 | 37,389 | 1087 | 55,472 | 65,087 | 1041.2 | 1210.5 |
Year | 1953 | 2016 | Change | |||
---|---|---|---|---|---|---|
Land Use | Area km2 | % | Area km2 | % | Area km2 | % |
Forests | 142.87 | 33.19 | 236.6 | 54.97 | 93.73 | 21.77 |
Meadows and pastures | 31.81 | 7.39 | 107.73 | 25.02 | 75.92 | 17.64 |
Ploughlands | 143.03 | 33.23 | 40.25 | 9.35 | −102.78 | −23.88 |
Orchards | 6.28 | 1.46 | 1.96 | 0.46 | −4.32 | −1.00 |
Barren land | 96.33 | 22.38 | 1.06 | 0.25 | −95.27 | −22.13 |
Settlements | 10.12 | 2.35 | 42.84 | 9.95 | 32.72 | 7.60 |
Total | 430.44 | 100 | 430.44 | 100 | 0 | 0 |
1953 | ||||||||
No. | River Basin | Area (km2) | Erosion Category | Zmean | ||||
I | II | III | IV | V | ||||
Excessive Erosion | Intensive Erosion | Medium Erosion | Weak Erosion | Very Weak Erosion | ||||
1 | Kozarska River | 101.00 | 19.63 | 26.31 | 45.43 | 0.00 | 9.63 | 0.72 |
2 | Palojska River | 6.87 | 3.12 | 3.43 | 0.32 | 0.00 | 0.00 | 1.02 |
3 | Predejanska River | 19.58 | 9.55 | 2.62 | 7.41 | 0.00 | 0.00 | 0.93 |
4 | Bistrička River | 29.18 | 0.18 | 18.53 | 10.47 | 0.00 | 0.00 | 0.74 |
5 | Džepska River | 91.88 | 25.00 | 21.44 | 35.01 | 10.43 | 0.00 | 0.75 |
6 | Jastrebačka River | 9.84 | 7.18 | 0.00 | 2.66 | 0.00 | 0.00 | 1.06 |
7 | Koznica River | 21.57 | 2.64 | 18.62 | 0.31 | 0.00 | 0.00 | 0.89 |
8 | Letoviška River | 19.60 | 10.52 | 1.95 | 7.13 | 0.00 | 0.00 | 0.96 |
9 | Rdovska River | 19.36 | 7.19 | 5.59 | 6.58 | 0.00 | 0.00 | 0.90 |
10 | Immediate South Morava Basin | 111.56 | 52.18 | 34.54 | 20.68 | 2.68 | 1.91 | 0.96 |
Total | km2 | 430.44 | 137.19 | 133.03 | 135.56 | 13.11 | 11.54 | 0.84 |
% | 100.00 | 31.9 | 30.9 | 31.5 | 3.0 | 3.7 | ||
2016 | ||||||||
No | River Basin | Area (km2) | Erosion Category | Zmean | ||||
I | II | III | IV | V | ||||
Excessive Erosion | Intensive Erosion | Medium Erosion | Weak Erosion | Very Weak Erosion | ||||
1 | Kozarska River | 101.00 | 3.05 | 9.75 | 38.76 | 45.44 | 0.27 | |
2 | Palojska River | 6.87 | 0.58 | 2.80 | 2.51 | 0.29 | ||
3 | Predejanska River | 19.58 | 2.13 | 1.36 | 8.53 | 6.56 | 0.26 | |
4 | Bistrička River | 29.18 | 0.41 | 14.08 | 13.27 | 0.21 | ||
5 | Džepska River | 91.88 | 17.53 | 56.07 | 17.85 | 0.33 | ||
6 | Jastrebačka River | 9.84 | 3.83 | 5.48 | 0.11 | 0.42 | ||
7 | Koznica River | 21.57 | 4.88 | 9.43 | 5.37 | 0.31 | ||
8 | Letoviška River | 19.60 | 7.55 | 7.54 | 3.90 | 0.43 | ||
9 | Rdovska River | 19.36 | 1.91 | 12.90 | 4.05 | 0.30 | ||
10 | Immediate South Morava Basin | 111.56 | 1.68 | 11.86 | 22.8 | 54.8 | 7.4 | 0.42 |
Total | km2 | 430.44 | 1.68 | 17.04 | 70.6 | 210.39 | 106.46 | 0.32 |
% | 100.00 | 0.42 | 4.23 | 17.52 | 52.20 | 26.41 |
No. | River Basin | F (km2) | Forest Area | Biotechnical Works | Zmean | ΔZ | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
1953 | 2016 | ||||||||||
km2 | % | km2 | % | ha | % | 1953 | 2010 | ||||
1 | Kozarska River | 101.0 | 55.61 | 55.06 | 56.06 | 55.50 | 44.70 | 0.44 | 0.72 | 0.27 | 0.45 |
2 | Palojska River | 6.87 | 4.04 | 58.86 | 4.98 | 72.55 | 94.40 | 13.74 | 1.02 | 0.29 | 0.73 |
3 | Predejanska River | 19.68 | 9.15 | 46.49 | 10.70 | 54.37 | 155.00 | 7.88 | 0.93 | 0.26 | 0.67 |
4 | Bistrička River | 29.18 | 20.97 | 71.87 | 21.20 | 72.64 | 22.50 | 0.77 | 0.74 | 0.21 | 0.53 |
5 | Džepska River | 91.88 | 40.78 | 44.38 | 49.91 | 54.32 | 912.70 | 9.93 | 0.75 | 0.33 | 0.42 |
6 | Jastrebačka River | 9.84 | 3.16 | 32.11 | 3.45 | 35.10 | 29.40 | 2.99 | 1.06 | 0.42 | 0.64 |
7 | Koznica River | 21.57 | 7.70 | 35.70 | 7.74 | 35.89 | 4.20 | 0.19 | 0.89 | 0.31 | 0.58 |
8 | Letoviška River | 19.60 | 8.45 | 43.11 | 9.17 | 46.81 | 72.40 | 3.70 | 0.96 | 0.43 | 0.53 |
9 | Rdovska River | 19.36 | 10.26 | 53.01 | 10.77 | 55.63 | 51.00 | 2.63 | 0.90 | 0.30 | 0.60 |
Immediate South Morava River Basin | |||||||||||
10 | Krpejski potok | 2.60 | 0.57 | 21.92 | 1.50 | 57.62 | 92.80 | 35.69 | 1.04 | 0.33 | 0.71 |
11 | Bujica Mlakačka | 0.71 | 0.06 | 8.03 | 0.28 | 38.82 | 21.56 | 30.36 | 1.22 | 0.49 | 0.73 |
12 | Zle doline | 0.36 | 0.13 | 36.00 | 0.27 | 75.00 | 14.00 | 38.89 | 1.13 | 0.27 | 0.86 |
13 | Goli čukar | 0.42 | 0.00 | 0.00 | 0.05 | 10.95 | 4.60 | 10.95 | 0.95 | 0.43 | 0.52 |
14 | Kamilja luka | 0.39 | 0.07 | 17.95 | 0.18 | 45.13 | 10.60 | 27.18 | 1.05 | 0.39 | 0.66 |
15 | Kalimanska River | 16.04 | 5.44 | 33.91 | 9.44 | 58.84 | 399.8 | 24.92 | 0.93 | 0.28 | 0.65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostadinov, S.; Braunović, S.; Dragićević, S.; Zlatić, M.; Dragović, N.; Rakonjac, N. Effects of Erosion Control Works: Case Study—Grdelica Gorge, the South Morava River (Serbia). Water 2018, 10, 1094. https://doi.org/10.3390/w10081094
Kostadinov S, Braunović S, Dragićević S, Zlatić M, Dragović N, Rakonjac N. Effects of Erosion Control Works: Case Study—Grdelica Gorge, the South Morava River (Serbia). Water. 2018; 10(8):1094. https://doi.org/10.3390/w10081094
Chicago/Turabian StyleKostadinov, Stanimir, Sonja Braunović, Slavoljub Dragićević, Miodrag Zlatić, Nada Dragović, and Nikola Rakonjac. 2018. "Effects of Erosion Control Works: Case Study—Grdelica Gorge, the South Morava River (Serbia)" Water 10, no. 8: 1094. https://doi.org/10.3390/w10081094
APA StyleKostadinov, S., Braunović, S., Dragićević, S., Zlatić, M., Dragović, N., & Rakonjac, N. (2018). Effects of Erosion Control Works: Case Study—Grdelica Gorge, the South Morava River (Serbia). Water, 10(8), 1094. https://doi.org/10.3390/w10081094