An Integrated Simulation, Inference and Optimization Approach for Groundwater Remediation with Two-Stage Health-Risk Assessment
Abstract
:1. Introduction
2. Methods and Materials
2.1. Simulation of Contaminant Transport Process
2.2. Statistical Analysis
2.3. Optimization Model
3. Case Study
4. Results Analysis
4.1. Optimization Results Analysis
4.2. Environmental Standard and Health Risk
4.3. Trade-Off Analysis
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yang, A.L.; Huang, G.H.; Qin, X.S.; Fan, Y.R. Evaluation of remedial options for a benzene-contaminated site through a simulation-based fuzzy-MCDA approach. J. Hazard. Mater. 2012, 213–214, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Smargiassi, A.; Goldberg, M.S.; Wheeler, A.J.; Plante, C.; Valois, M.F.; Mallach, G. Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries. Environ. Res. 2014, 132, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, L.; Lu, H.W.; Fan, X. Control of stochastic carcinogenic and noncarcinogenic risks in groundwater remediation through an integrated optimization design model. Stoch. Environ. Res. Risk Assess. 2015, 29, 2159–2172. [Google Scholar] [CrossRef]
- Thangjam, S.S.; Dibakar, C. Multi-objective optimization for optimal groundwater remediation design and management systems. Geosci. J. 2010, 14, 87–97. [Google Scholar]
- Yang, Q.; He, L.; Lu, H.W. A multi objective optimisation model for groundwater remediation design at petroleum contaminated sites. Water Resour. Manag. 2013, 27, 2411–2427. [Google Scholar] [CrossRef]
- Fan, Y.R.; Huang, G.H.; Baetz, B.W.; Li, Y.P.; Huang, K. Development of a Copula—based Particle Filter (CopPF) Approach for Hydrologic Data Assimilation under Consideration of Parameter Interdependence. Water Resour. Res. 2017, 53, 4850–4875. [Google Scholar] [CrossRef]
- Fan, Y.R.; Huang, W.W.; Huang, G.H.; Li, Y.P.; Huang, K.; Li, Z. Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas. Adv. Water Resour. 2016, 88, 170–185. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Treatment Technologies for Site Cleanup: Annual Status Report (Twelfth Edition); EPA-542-R07-012 (no. 12); U.S. EPA, Office of Solid Waste and Emergency Response Technology Innovation Office: Washington, DC, USA, 2007. Available online: https://clu-in.org/download/remed/asr/12/asr12_main_body.pdf (accessed on 7 September 2017).
- He, L.; Huang, G.H.; Lu, H.W.; Zeng, G.M. Optimization of surfactant-enhanced aquifer remediation for a laboratory BTEX system under parameter uncertainty. Environ. Sci. Technol. 2008, 42, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.L.; Huang, G.H.; Fan, Y.R.; Zhang, X.D. A fuzzy simulation-based optimization approach for groundwater remediation design at contaminated aquifers. Math. Probl. Eng. 2012, 2012, 291–300. [Google Scholar] [CrossRef]
- Xie, Y.F.; Li, X.W.; Liu, X.J.; Du, X.M.; Li, F.S.; Cao, Y.Z. Performance evaluation of remediation scenarios for DNAPL contaminated groundwater using analytical models and probabilistic methods. Proc. Environ. Sci. 2016, 31, 264–273. [Google Scholar] [CrossRef]
- Park, C.H.; Aral, M.M. Multi-objective optimization of pumping rates and well placement in coastal aquifers. J. Hydrol. 2004, 290, 80–99. [Google Scholar] [CrossRef]
- Baú, D.A.; Mayer, A.S. Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution. J. Contam. Hydrol. 2008, 100, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, M.L. Use of historical pump-and-treat data to enhance site characterization and remediation performance assessment. Water Air Soil Pollut. 2013, 224, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.C. Cost-effective optimal design of a pump-and-treat system for remediating groundwater contaminant at an industrial complex. Geosci. J. 2016, 20, 891–901. [Google Scholar] [CrossRef]
- Hsiao, C.T.; Chang, L.C. Dynamic optimal groundwater management with inclusion of fixed costs. J. Water Resour. Plan. Manag. ASCE 2002, 128, 57–65. [Google Scholar] [CrossRef]
- Dougherty, D.E.; Marryott, R.A. Optimal groundwater management: 1. Simulated annealing. Water Resour. Res. 1991, 27, 2497–2508. [Google Scholar] [CrossRef]
- Johnson, V.M.; Rogers, L.L. Location analysis in groundwater remediation using neural networks. Ground Water 1995, 33, 749–758. [Google Scholar] [CrossRef]
- Taheri, M.; Mohebbi, A. Design of artificial neural networks using a geneticalgorithm to predict collection efficiency in venturi scrubbers. J. Hazard. Mater. 2008, 157, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, A.; Samani, H.M.V.; Samani, Z.M.V. GA-ILP Method for optimization of water distribution networks. Water Resour. Manag. 2011, 25, 1791–1808. [Google Scholar] [CrossRef]
- Kaini, P.; Artita, K.; Nicklow, J.W. Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals. Water Resour. Manag. 2012, 26, 1827–1845. [Google Scholar] [CrossRef]
- Moharram, S.H.; Gad, M.I.; Saafan, T.A.; Allah, S.K. Optimal groundwater management using genetic algorithm in El-Farafra Oasis, western desert, Egypt. Water Resour. Manag. 2012, 26, 927–948. [Google Scholar] [CrossRef]
- Ricciardi, K.L.; Pinder, G.F.; Karatzas, G.P. Efficient groundwater remediation system design subject to uncertainty using robust optimization. J. Water Resour. Plan. Manag. ASCE 2007, 133, 253–263. [Google Scholar] [CrossRef]
- Ruggieria, F.; Gil, R.A. Multivariate factorial analysis to design a robust batch leaching test to assess the volcanic ash geochemical hazard. J. Hazard. Mater. 2012, 213–214, 273–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, X.S. Assessing environmental risks through fuzzy parameterized probabilistic analysis. Stoch. Environ. Res. Risk Assess. 2012, 26, 43–58. [Google Scholar] [CrossRef]
- Han, L.; Qian, L.; Yan, J.; Liu, R.; Du, Y.; Chen, M. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater. Environ. Sci. Pollut. Res. 2016, 23, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Huang, G.H.; Zeng, G.M. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada. Water Res. 2008, 42, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Delshad, M.; Pope, G.A.; Sepehrnoori, K. A compositional simulator for modeling surfactant enhanced aquifer remediation, 1. Formulation. J. Contam. Hydrol. 1996, 23, 303–327. [Google Scholar] [CrossRef]
- Kao, C.M.; Prosser, J. Evaluation of natural attenuation rate at a gasoline spill site. J. Hazard. Mater. 2001, 82, 275–289. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, C. Optimal remediation policy selection under general conditions. Groundwater 1997, 35, 757–764. [Google Scholar] [CrossRef]
- EEP. Numerical Simulation for Contaminant Flow and Transport in Subsurface—A Study of Soil and Groundwater Contamination at the Coleville Site; Process Report; University of Regina: Regina, SK, Canada, 2005. [Google Scholar]
- Prasad, R.K.; Mathur, S. Health-Risk-Based remedial alternatives for contaminated aquifer management. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2010, 14, 61–69. [Google Scholar] [CrossRef]
- Kollat, J.B.; Reed, P.M. Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv. Water Resour. 2006, 29, 792–807. [Google Scholar] [CrossRef]
- Chen, B.; Li, P.; Wu, H.J.; Husain, T.; Khan, F. MCFP: A Monte Carlo Simulation-based Fuzzy Programming Approach for Optimization under Dual Uncertainties of Possibility and Continuous Probability. J. Environ. Inf. 2017, 29, 88–97. [Google Scholar] [CrossRef]
- Li, Y.P.; Nie, S.; Huang, C.Z.; McBean, E.A.; Fan, Y.R.; Huang, G.H. An Integrated Risk Analysis Method for Planning Water Resource Systems to Support Sustainable Development of An Arid Region. J. Environ. Inf. 2017, 29, 1–15. [Google Scholar] [CrossRef]
Remediation Duration | Cmax (μg/L) | Q1 (m3/h) | Q2 (m3/h) | Q3 (m3/h) | Q4 (m3/h) | Q5 (m3/h) | Q6 (m3/h) | Qtotal (m3/h) |
---|---|---|---|---|---|---|---|---|
5 years | 200 | 46.93 | 16.69 | 100 | 0 | 69.76 | 0 | 233.38 |
150 | 51.7 | 26.02 | 100 | 0 | 74.32 | 0 | 252.04 | |
100 | 35.88 | 35.14 | 100 | 0 | 99.27 | 0 | 270.29 | |
50 | - | - | - | - | - | - | - | |
10 years | 200 | 18.65 | 9.3 | 36.45 | 0 | 27.09 | 0 | 91.49 |
150 | 27.75 | 11.35 | 46.99 | 0 | 30.58 | 0 | 116.67 | |
100 | 81.05 | 21.14 | 78.72 | 0 | 18.81 | 0 | 199.72 | |
50 | - | - | - | - | - | - | - | |
15 years | 200 | 37.54 | 0 | 37.54 | 0 | 0 | 0 | 75.08 |
150 | 37.54 | 0 | 37.54 | 0 | 0 | 0 | 75.08 | |
100 | 82.87 | 32.36 | 50.51 | 0 | 0 | 0 | 165.74 | |
50 | - | - | - | - | - | - | - | |
20 years | 200 | 22.93 | 0 | 57.38 | 0 | 34.45 | 0 | 114.76 |
150 | 22.93 | 0 | 57.38 | 0 | 34.45 | 0 | 114.76 | |
100 | 22.93 | 0 | 57.38 | 0 | 34.45 | 0 | 114.76 | |
50 | 62.98 | 35.03 | 68.37 | 0 | 40.42 | 0 | 206.8 |
Remediation Duration | ELCR | Q1 (m3/h) | Q2 (m3/h) | Q3 (m3/h) | Q4 (m3/h) | Q5 (m3/h) | Q6 (m3/h) | Qtotal (m3/h) |
---|---|---|---|---|---|---|---|---|
5 years | 0.00055 | 51.7 | 26.02 | 100 | 0 | 74.32 | 0 | 252.04 |
0.00044 | 51.7 | 26.02 | 100 | 0 | 74.32 | 0 | 252.04 | |
0.00033 | 51.7 | 26.02 | 100 | 0 | 74.32 | 0 | 252.04 | |
0.00022 | 51.7 | 26.02 | 100 | 0 | 74.32 | 0 | 252.04 | |
0.00011 | 51.26 | 51.26 | 100 | 0 | 100 | 0 | 302.52 | |
10 years | 0.00055 | 27.75 | 11.35 | 46.99 | 0 | 30.58 | 0 | 116.67 |
0.00044 | 27.75 | 11.35 | 46.99 | 0 | 30.58 | 0 | 116.67 | |
0.00033 | 27.75 | 11.35 | 46.99 | 0 | 30.58 | 0 | 116.67 | |
0.00022 | 98.33 | 33.85 | 76.56 | 0 | 12.08 | 0 | 220.82 | |
0.00011 | - | - | - | - | - | - | - | |
15 years | 0.00055 | 36.77 | 0 | 36.77 | 0 | 0 | 0 | 73.54 |
0.00044 | 37.54 | 0 | 37.54 | 0 | 0 | 0 | 75.08 | |
0.00033 | - | - | - | - | - | - | - | |
0.00022 | - | - | - | - | - | - | - | |
0.00011 | - | - | - | - | - | - | - | |
20 years | 0.00055 | 18.15 | 0 | 18.15 | 0 | 0 | 0 | 36.3 |
0.00044 | 22.93 | 0 | 57.38 | 0 | 34.45 | 0 | 114.76 | |
0.00033 | - | - | - | - | - | - | - | |
0.00022 | - | - | - | - | - | - | - | |
0.00011 | - | - | - | - | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Yang, Q.; Fan, Y.; Suo, M.; Fu, H.; Liu, J.; Lin, X. An Integrated Simulation, Inference and Optimization Approach for Groundwater Remediation with Two-Stage Health-Risk Assessment. Water 2018, 10, 694. https://doi.org/10.3390/w10060694
Yang A, Yang Q, Fan Y, Suo M, Fu H, Liu J, Lin X. An Integrated Simulation, Inference and Optimization Approach for Groundwater Remediation with Two-Stage Health-Risk Assessment. Water. 2018; 10(6):694. https://doi.org/10.3390/w10060694
Chicago/Turabian StyleYang, Aili, Qi Yang, Yurui Fan, Meiqin Suo, Haiyan Fu, Jing Liu, and Xiajing Lin. 2018. "An Integrated Simulation, Inference and Optimization Approach for Groundwater Remediation with Two-Stage Health-Risk Assessment" Water 10, no. 6: 694. https://doi.org/10.3390/w10060694
APA StyleYang, A., Yang, Q., Fan, Y., Suo, M., Fu, H., Liu, J., & Lin, X. (2018). An Integrated Simulation, Inference and Optimization Approach for Groundwater Remediation with Two-Stage Health-Risk Assessment. Water, 10(6), 694. https://doi.org/10.3390/w10060694