Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment
Abstract
:1. Introduction
2. Water Resources for Chilean Irrigation
- The location, design, and operation of reuse schemes, which consider the distance between the wastewater supply point and irrigation distribution sites.
- The implementation of quality standards based on an institutional framework and State policies, which determine the specific use of reclaimed wastewater in agriculture.
- Training for users (irrigation) of treated wastewater about the correct use of water from these sources.
- The control and monitoring systems implementation, due to the potential (direct and indirect) impact on the soil, air, surface and groundwater, crops, and human health risk.
3. Livestock Wastewater Management and Recycling, and Its Potential for Agricultural Irrigation in Chile
4. Municipal Wastewater Management and Its Agricultural Irrigation Recycling Potential in Chile
5. Opportunities for Recycling Municipal and Livestock Wastewater in Chilean Agriculture
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO’s Information System on Water and Agriculture (AQUASTAT). Water Agricultural and Other Water Uses Database of 2005. Available online: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=es (accessed on 1 November 2017).
- Hillel, D.; Vlek, P. The sustainability of irrigation. Adv. Agron. 2005, 87, 55–84. [Google Scholar]
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24, 1–24. [Google Scholar] [CrossRef]
- Boutraa, T. Improvement of water use efficiency in irrigated agriculture: A review. J. Agron. 2010, 9, 1–8. [Google Scholar] [CrossRef]
- Kuzdas, C.; Warner, B.P.; Wiek, A.; Vignola, R. Sustainability assessment of water governance alternatives: The case of Guanacaste Costa Rica. Sustain. Sci. 2015, 11, 1–17. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; Abarza, A.; et al. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Rivera, D.; Godoy-Faúdez, A.; Lillo, M.; Alvez, A.; Delgado, V.; Gonzalo-Martín, C.; Menasalvas, E.; Costumero, R.; García-Pedrero, A. Legal disputes as a proxy for regional conflicts over water rights in Chile. J. Hydrol. 2016, 535, 36–45. [Google Scholar] [CrossRef]
- Campos, J.; Polit, E. Nuevos Enfoques Para Chile Potencia Alimentaria y Forestal; Oficina de Estudios y Políticas Agrarias (ODEPA): Santiago, Chile, 2011; p. 8. [Google Scholar]
- Oyarzún, R.; Arumí, J.L.; Alvarez, P.; Rivera, D. Water use in the chilean agriculture: Current situation and areas for research development. In Agricultural Water Management Research Trends; Sorensen, M.L., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2008; pp. 213–252. ISBN 978-60692-455-6. [Google Scholar]
- Jara, J.; López, M.A.; San Martín, A.; Salgado, L.; Melo, O. Administration and management of irrigation water in 24 user organizations in Chile. Chil. J. Agric. Res. 2009, 69, 224–234. [Google Scholar] [CrossRef]
- Meza, F.J.; Wilks, D.S.; Gurovich, L.; Bambach, N. Impacts of climate change on irrigated agriculture in the Maipo Basin, Chile: Reliability of water rights and changes in the demand for irrigation. J. Water Resour. Plan. Manag. 2012, 138, 421–430. [Google Scholar] [CrossRef]
- Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water scarcity and the impact of the mining and agricultural sectors in Chile. Sustainability 2016, 8, 1–18. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef]
- Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Sgroi, M.; Vagliasindi, F.G.; Roccaro, P. Feasibility, sustainability and circular economy concepts in water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 20–25. [Google Scholar] [CrossRef]
- Jiménez, B. Irrigation in Developing Countries Using Wastewater. Int. Rev. Environ. Strategy 2006, 6, 229–250. [Google Scholar]
- World Health Organization (WHO). Guidelines for the Safe Use of Wastewater, Excreta and Greywater (Vol. 1: Policy and Regulatory Aspects); World Health Organization: Lyon, France, 2006; p. 114. [Google Scholar]
- Bastan, R.; Murray, D. Guidelines for Water Reuse, EPA/600/R-12/618; US EPA Office of Research and Development: Washington, DC, USA, 2012; p. 643. [Google Scholar]
- Keraita, B.; Jiménez, B.; Drechsel, P. Extent and implications of agricultural reuse of untreated, partly treated and diluted wastewater in developing countries. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 1–15. [Google Scholar] [CrossRef]
- Ministerio de Agricultura de Chile (MA). Vulnerability Chilean Maps. Available online: http://www.ide.cl/vinculos/servicios-de-mapas-y-catalogo/wms/45-ministerio-de-agricultura.html (accessed on 3 November 2017).
- Holzapfel, E.A.; Hepp, R.F.; Mariño, M.A. Effect of irrigation on fruit production in blueberry. Agric. Water Manag. 2004, 67, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Holzapfel, E.A.; Leiva, C.; Mariño, M.A.; Paredes, J.; Arumí, J.L.; Billib, M. Furrow irrigation management and design criteria using efficiency parameters and simulation models. Chil. J. Agric. Res. 2010, 70, 287–296. [Google Scholar] [CrossRef]
- Centro Nacional de Riesgos (CNR). Diagnóstico de fuentes de agua no convencionales en el regadío inter-regional. In Technical Report; Comisión Nacional de Riego: Santiago, Chile, 2010; p. 191. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. La Larga Sombra del Ganado: Problemas Ambientales y Opciones; División de Comunicación de la FAO: Roma, Italia, 2009; p. 465. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Mundial Database of Livestock Production. Available online: http://faostat.fao.org/default.aspx (accessed on 11 November 2017).
- Oficina de Estudios y Políticas Agrarias (ODEPA). Censo Agropecuario. Available online: http://www.odepa.gob.cl/menu/CensoAgropecuario (accessed on 11 November 2017).
- Villamar, C.A.; Vidal, G. Capítulo: Minimización en el origen: Indicadores productivos y características fisicoquímicas como herramientas para la gestión en el tratamiento y disposición de purines. In Aportes a la Gestión y Optimización de la Tecnología Ambiental del Sector Porcino; Universidad de Concepción: Concepción, Chile, 2012; pp. 13–22. ISSN 978-956-227-367-1. [Google Scholar]
- Sistema de Evaluación Ambiental (SEA). Productive Activities Subject to Chilean Environmental Declaration or Assessment Database. Available online: http://www.sea.gob.cl/ (accessed on 11 November 2017).
- Froese, C. Water usage and manure production rates in today´s pig industry. Proc. Manit. Swine Semin. 2003, 14, 218–223. [Google Scholar]
- Portejoie, S.; Dourmad, J.; Martinez, J.; Lebreton, Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci. 2004, 91, 45–55. [Google Scholar] [CrossRef]
- Villamar, C.A.; Rodríguez, D.C.; López, D.; Peñuela, G.; Vidal, G. Effect of the generation and physical–chemical characterization of swine and dairy cattle slurries on treatment technologies. Waste Manag. Res. 2013, 31, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Jondreville, C.; Revy, P.S.; Dourmad, J.Y. Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livest. Prod. Sci. 2003, 84, 147–156. [Google Scholar] [CrossRef]
- Dourmad, J.Y.; Jondreville, C. Impact of nutrition on nitrogen, phosphorus, Cu and Zn in pig manure and on emissions of ammonia and odours. Livest. Sci. 2007, 112, 192–198. [Google Scholar] [CrossRef]
- Ortíz, G.; Villamar, C.A.; Vidal, G. Odor from anaerobic digestion of swine slurry: Influence of pH, temperature and organic loading. Sci. Agric. 2014, 71, 443–450. [Google Scholar] [CrossRef]
- Chartier, C.; López, D.; Vidal, G. Anaerobic Technology Influence on Pig Slurry Biofertirrigation: Evaluation of Enteric Bacteria. Water Air Soil Pollut. 2014, 225, 1790. [Google Scholar] [CrossRef]
- Ndayegamiye, A.; Coté, D. Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties. Can. J. Soil Sci. 1989, 69, 39–47. [Google Scholar] [CrossRef]
- Villamar, C.A.; Silva, J.; Bay-Schmith, E.; Vidal, G. Toxicity identification evaluation of anaerobically treated swine slurry: A comparison between Daphnia magna and Raphanus sativus. J. Environ. Sci. Health Part B Pest. Food Contam. Agric. Wastes 2014, 49, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Heaton, J.C.; Jones, K. Microbial contamination of fruit andvegetables and the behaviour of enteropathogens in the phyllosphere: A review. J. Appl. Microbiol. 2007, 30, 239–248. [Google Scholar] [CrossRef]
- Ziemer, C.J.; Bonner, J.M.; Cole, D.; Vinje, J.; Constantini, V.; Goyal, S.; Saif, L.J. Fate and transport of zoonotic, bacterial, viral, and parasitic pathogens during swine manure treatment, storage, and land application. J. Anim. Sci. 2010, 88, E84–E94. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Moral, R.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Moreno-Caselles, J.; Paredes, C. Estimation of nutrient values of pig slurries in Southeast Spain using easily determined properties. Waste Manag. 2005, 25, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Aga, D. Fate of Pharmaceuticals in the Environment and in Water Treatment Systems; Taylor and Francis Group: Boca Raton, FL, USA, 2008; pp. 123–363. [Google Scholar] [CrossRef]
- Shah, F.U.R.; Ahmad, N.; Masood, K.R.; Peralta-Videla, J.R.; Ahmad, F.U.D. Heavy metal toxicity in plants. In Plant Adapt. Phytoremediat; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2010; pp. 71–97. ISSN 0179-5953. [Google Scholar]
- Tasho, R.P.; Cho, J.Y. Veterinatry antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Sweeten, J.M.; Hatfield, J.; Stewart, B. Cattle feedlot manure and wastewater management practices. In Animal Waste Utilization: Effective Use of Manure as a Soil Resource; CRC Press: Boca Raton, FL, USA, 1998; pp. 125–155. ISBN 1-57504-068-9/02. [Google Scholar]
- Sánchez, M.; González, J.L. The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour. Technol. 2005, 96, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Provolo, G.; Martínez-Suller, L. In situ determination of slurry nutrient content by electrical conductivity. Bioresour. Technol. 2007, 98, 3235–3242. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Suller, L.; Azzellino, A.; Provolo, G. Analysis of livestock slurries from farms across Northern Italy: Relationship between indicators and nutrient content. Biosyst. Eng. 2008, 99, 540–552. [Google Scholar] [CrossRef]
- Suresh, A.; Choi, H.L. Estimation of nutrients and organic matter in Korean swine slurry using multiple regression analysis of physical and chemical properties. Bioresour. Technol. 2011, 102, 8848–8859. [Google Scholar] [CrossRef] [PubMed]
- Osaki, M.; Morikawa, K.; Shinano, T.; Urayama, M.; Tadano, T. Productivity of high-yielding crops. II Comparison of N, P, K, Ca and Mg accumulation and distribution amog high-yielding crops. Soil Sci. Plant Nutr. 1991, 37, 445–454. [Google Scholar] [CrossRef]
- Scotford, I.M.; Cumby, T.R.; White, R.P.; Carton, O.T.; Lorenz, F.; Hatterman, U.; Provolo, G. Estimation of the nutrient value of agricultural slurries by measurement of physical and chemical properties. J. Agric. Eng. Res. 1998, 71, 291–305. [Google Scholar] [CrossRef]
- Boursier, H.; Béline, F.; Paul, E. Piggery wastewater characterization for biological nitrogen removal process design. Bioresour. Technol. 2006, 96, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Moral, R.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Moreno-Caselles, J.; Paredes, C.; Rufete, B. Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Manag. 2008, 28, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Villamar, C.A. Influencia del Tratamiento Anaerobio Sobre la Eliminación de Nutrientes y Metales Contenidos en Purines Porcinos en Humedales Construidos. Ph.D. Thesis, Universidad de Concepción, Concepción, Chile, 2015. [Google Scholar]
- Lutz, W.; Sanderson, W.; Scherbov, S. The end of world population growth. Nature 2001, 412, 543–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Instituto Nacional de Estadísticas-Chile (INE). Chile: Estimaciones y Proyecciones de Población por Sexo y Edad. País Urbano-Rural 1990–2020. Available online: http://www.ine.cl/canales/chile_estadistico/familias/demograficas_vitales.php (accessed on 2 December 2017).
- Instituto Nacional de Estadísticas-Chile (INE). Compendio Estadístico 2012. 2012. Available online: http://www.ine.cl/canales/menu/publicaciones/compendio_estadistico/compendio_estadistico2012.php (accessed on 5 December 2017).
- Organization for Economic Co-operation and Development (OECD). Database of Member Countries. Available online: https://data.oecd.org/pop/population.htm (accessed on 5 January 2018).
- Superintendencia de Servicios Sanitarios de Chile (SISS). Informe de Gestión de Sector Sanitario; SISS: Santiago, Chile, 2014; p. 192. [Google Scholar]
- Pujor, R.; Lienard, A. Qualitative and quantitative characterization of wastewater for small communities. In International Specialized Conference on Design and Operation of Small Wastewater Treatment Plants; Ødegard, H., Ed.; Tapir: Trondheim, Norway, 1989; pp. 267–274. ISBN Hal-00516567. [Google Scholar]
- Barrera, A. Análisis y Caracterización de los Parámetros de las Aguas Residuales Necesarios para el Dimensionamiento de Estaciones Depuradoras de Menos de 2000 Hab-eq; Environmental Engineering; Universidad Politécnica de Catalunya: Barcelona, España, 1999. [Google Scholar]
- Henze, M.; Harremoës, P.; LaCour-Jansen, J.; Arvin, E. Wastewater Treatment: Biological and Chemical Processes; Springer: Heidelberg, Germany, 2002; p. 430. [Google Scholar]
- Vera, I.; Sáez, K.; Vidal, G. Performance of 14 full-scale sewage treatment plants: Comparison between four aerobic technologies regarding effluent quality, sludge production and energy consumption. Environ. Technol. 2013, 34, 2267–2275. [Google Scholar] [CrossRef] [PubMed]
- Vera, I. Análisis de Funcionamiento y Patrones Asociativos de Sistemas de Tratamiento Convencionales y Naturales de Aguas Servidas para la Eliminación de Materia Orgánica y Nutrientes. Ph.D. Thesis, Universidad de Concepción, Concepción, Chile, 2012. [Google Scholar]
- Vera, I.; Jorquera, C.; López, D.; Vidal, G. Humedales construidos para tratamiento y reúso de aguas servidas en Chile: Reflexiones. Tecnol. Cienc. Agua 2016, 7, 19–35. [Google Scholar]
- Rai, P.K.; Tripathi, B.D. Microbial contamination in vegetables due to irrigation with partially treated municipal wastewater in a tropical city. Int. J. Environ. Health Res. 2007, 17, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.C.; Boxall, A.B. Occurrence and fate of human pharmaceuticals in the environment. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2010; pp. 53–154. [Google Scholar]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef] [PubMed]
- Metcalf and Eddy. Water Reuse: Issues, Technologies, and Applications; Mc Graw Hill: New York, NY, USA, 2007; p. 1503. [Google Scholar]
- Roccaro, P. Treatment processes for municipal wastewater reclamation: The challenges of emerging contaminants and direct potable reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 46–54. [Google Scholar] [CrossRef]
- Castro, E.; Mañas, M.; De Las Heras, J. Effects of wastewater irrigation on soil properties and turfgrass growth. Water Sci. Technol. 2011, 63, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Biblioteca del Congreso Nacional de Chile (BCN). Decreto Supremo 90 de 2000. Establece Norma de Emisión para la Regulación de Contaminantes Asociados a las Descargas de Residuos Líquidos a Aguas Marinas y Continentales Superficiales. 2000. Available online: http://www.leychile.cl/ Navegar?idNorma=182637 (accessed on 10 December 2018).
- Superintendencia de Servicios Sanitarios (SISS) de Chile. Plantas de Tratamiento de Aguas Servidas en Operación año 2016. Available online: http://www.siss.gob.cl/577/w3-propertyvalue-3544.html (accessed on 10 December 2018).
- Vo, P.; Ngo, H.; Guo, W.; Zhou, J.; Nguyen, P.; Listowski, A.; Wang, X. A mini-review on the impacts of climate change on wastewater reclamation and reuse. Sci. Total Environ. 2014, 494–495, 9–17. [Google Scholar] [CrossRef]
- Foundation Chile (FCh). Aguas Residuales como Nueva Fuente de Agua. Diagnóstico del Potencial Reúso de Aguas Residuales en la Región de Valparaíso. Available online: http://www.fch.cl/recurso/sustentabilidad/aguas-residuales-nueva-fuente-agua/ (accessed on 10 December 2018).
- Ministerio del Interior y Seguridad Pública de Chile (MISP). Política Nacional para los Recursos Hídricos; MISP: Santiago, Chile, 2015; p. 104. [Google Scholar]
- Empresa Concesionaria de Servicios Sanitarios, S.A. (Econssa). Reúso de aguas residuales tratadas. In Memorias Seminario Reúso de Agua en los Servicios Sanitarios; Econssa: Santiago, Chile, 2016; p. 19. [Google Scholar]
- Vera, I.; Verdejo, N.; Chávez, W.; Jorquera, C.; Olave, J. Influence of hydraulic retention time and plant species on performance of mesocosm subsurface constructed wetlands during municipal wastewater treatment in super-arid areas. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2016, 51, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Vera, I.; Rojas, M.; Chávez, W.; Arriaza, B. Evaluación de materiales filtrantes para el reúso en agricultura de aguas residuales tratadas provenientes de zonas áridas. Cienc. Ing. Neogranadina 2016, 26, 5–19. [Google Scholar] [CrossRef]
- Tapia, Y.; Diaz, O.; Pizarro, C.; Segura, R.; Vines, M.; Zúñiga, G.; Moreno-Jiménez, E. Atriplex atacamensis and Atriplex halimus resist as contamination in Pre-Andean soils (northern Chile). Sci. Total Environ. 2013, 450–451, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture-Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Treftz, C.; Omaye, S. Hydroponics: Potential for augmenting sustainable food production in non-arable regions. Nutr. Food Sci. 2016, 46, 672–684. [Google Scholar] [CrossRef]
- Buckseth, T.; Sharma, A.K.; Pandey, K.K.; Singh, B.P.; Muthuraj, R. Methods of pre-basic seed potato production with special reference to aeroponics—A review. Sci. Hortic. 2016, 204, 79–87. [Google Scholar] [CrossRef]
- Ayers, R.; Westcot, D. Water Quality for Agriculture. Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/DOCReP/003/ T0234e/T0234E00.htm#TOC (accessed on 21 January 2018).
- Cassaniti, C.; Romano, D.; Hop, M.; Flowers, T. Growing floricultural crops with brackish water. Environ. Exp. Bot. 2013, 92, 165–175. [Google Scholar] [CrossRef]
- Dungan, R.S. Board-invited review: Fate and transport of bioaerosols associated with livestock operations and manures. J. Anim. Sci. 2010, 88, 3693–3706. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, L.; Delatorre, J.; De la Riva, F.; Monardes, V. Greening of arid cities by residual water reuse: A multidisciplinary project in northern Chile. Ambio 2003, 32, 264–268. [Google Scholar] [CrossRef]
- Dungan, R.S.; Leytem, A.B.; Verwey, S.A.; Bjorneberg, D.L. Assessment of bioaerosols at a concentrated dairy operation. Aerobiologia 2010, 26, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Flores, H.; Arumí, J.L.; Rivera, D.; Lagos, L.O. A simple method to identify areas of environmental risk due to manure application. Environ. Monit. Assess. 2012, 184, 3915–3928. [Google Scholar] [CrossRef] [PubMed]
- Biblioteca del Congreso Nacional de Chile (BCN). Ley 21,075 de 2018. Regula la Recolección, Reutilización y Disposición de Aguas Grises. Available online: https://www.leychile.cl/Navegar?idNorma=1115066 (accessed on 11 June 2018).
- Biblioteca del Congreso Nacional de Chile (BCN). Decreto Supremo 1333 de 1978. In Norma Chilena Sobre Requisitos para la Calidad del Agua para Diferentes Usos; BCN: Santiago, Chile, 1978; p. 15. [Google Scholar]
Zone | Region | Livestock | Potential Livestock Wastewater | ||||||
---|---|---|---|---|---|---|---|---|---|
Cattle | Swine | Cattle | Swine | ||||||
Number (103 Heads) | Percentage (%) | Number (103 Heads) | Percentage (%) | Flow (103 m3/d) | Percentage (%) | Flow (103 m3/d) | Percentage (%) | ||
North | Arica y Parinacota | 66.81 | 16.4 | 1.89 | 0.4 | 0.02 | 1.4 | 0.02 | 0.3 |
Tarapacá | 0.12 | 1.45 | 0.01 | 0.01 | |||||
Antofagasta | 0.28 | 1.89 | 0.02 | 0.02 | |||||
Atacama | 7.15 | 1.39 | 0.43 | 0.01 | |||||
Coquimbo | 41.28 | 3.78 | 2.48 | 0.04 | |||||
Central | Valparaíso | 102.70 | 76.0 | 173.79 | 99.5 | 6.16 | 89.6 | 1.74 | 99.5 |
O’higgins | 83.35 | 860.02 | 5.00 | 8.60 | |||||
Maule | 2582.23 | 93.45 | 15.49 | 0.93 | |||||
Biobio | 449.40 | 179.81 | 26.96 | 1.80 | |||||
Araucanía | 668.14 | 199.63 | 40.09 | 2.00 | |||||
Metropolitana | 101.28 | 1292.66 | 6.08 | 12.93 | |||||
Los Ríos | 621.60 | 34.30 | 37.30 | 0.34 | |||||
Los Lagos | 1047.19 | 79.76 | 62.83 | 0.80 | |||||
South | Aysén | 193.80 | 7.7 | 2.86 | 0.2 | 11.63 | 9.0 | 0.03 | 0.2 |
Magallanes | 141.76 | 1.90 | 8.51 | 0.02 | |||||
Total | 4384.40 | 2928.98 | 223.11 | 29.29 |
Parameter | Unit | Swine | Cattle | ||||
---|---|---|---|---|---|---|---|
Maternity-Weaning | Breeding-Fattening | References | Dairy | Calves-Beef | References | ||
pH | 6.9–7.5 | 7.2–8.4 | 3,4,5,6,9,10,12 | 6.9–7.8 | 6.3–7.9 | 2,7,10 | |
EC | mS/cm | 12.8–15.5 | 15.3–25.3 | 4,4,8,9,10 | 2.3–3.1 | 7.1–24.7 | 2,7,10 |
BOD5 | g/L | 9.0–25.0 | 16.6–21.6 | 3,4,8,9,10,12 | 0.6–2.9 | - | 10 |
COD | g/L | 24.0–65.2 | 45.3–57.7 | 3,4,5,8,9,10,12 | 2.6–4.8 | 3.1–41.0 | 2,10 |
NH4+-N | g/L | 1.4–1.8 | 2.0–3.1 | 1,3,4,5,6,7,8,9,10,12 | 0.1–0.2 | 0.2–2.4 | 2,10 |
TP | g/L | 0.6–1.4 | 0.8–2.8 | 1,3,4,5,6,7,8,9,10,12 | 0.01–0.07 | 0.3–1.2 | 2,7,10 |
K | g/L | 1.8–2.2 | 1.9–3.8 | 4,8 | 0.4–5.2 | 0.6–3.6 | 2,7 |
FC | NPM/100 mL | 103–108 | 11 | 105–107 | 10 | ||
C/N | 5.0–6.4 a | 5.4–10.8 a | 6.0–14.5 a | 2.6–205 a,* | |||
N:P:K | 0.6–0.8:0.3–0.6:1.0 a | 0.5–1.6:0.2–1.5:1.0 a | 0.1–0.5:0.1–0.5:1.0 a | 0.1–4.0: 0.1–2.0: 1.0 a |
Zone | Region | Population | Municipal Wastewater (m3/s) | |||
---|---|---|---|---|---|---|
Rural | Urban | |||||
103 People | Percentage (%) | 103 People | Percentage (%) | |||
North | Arica y Parinacota | 18.58 | 9.9 | 162.82 | 12.5 | 1.110 |
Tarapacá | 22.67 | 306.25 | ||||
Antofagasta | 15.04 | 573.09 | 1.154 | |||
Atacama | 26.63 | 257.98 | 0.596 | |||
Coquimbo | 141.61 | 597.54 | 1.091 | |||
Central | Valparaíso | 152.31 | 88.9 | 1643.45 | 85.9 | 3.878 |
O’higgins | 260.91 | 639.26 | 1.386 | |||
Maule | 334.84 | 688.84 | 2.559 | |||
Biobio | 335.45 | 1726.10 | 4.008 | |||
Araucanía | 316.06 | 670.34 | 2.077 | |||
Metropolitana | 235.66 | 6771.96 | 16.774 | |||
Los Ríos | 119.82 | 261.90 | 2.121 | |||
Los Lagos | 251.54 | 605.43 | ||||
South | Aysén | 16.10 | 1.2 | 90.77 | 1.6 | 0.206 |
Magallanes | 11.10 | 148.57 | 0.425 | |||
Total | 2258.35 | 15,144.28 | 37.385 |
Parameter | Units | Non-Reclaimed | Reclaimed a |
---|---|---|---|
pH | unit | 6.5–8.5 | 6.0–8.0 |
BOD5 | mg/L | 110–800 | 5–45 |
COD | mg/L | 250–1600 | 5–120 |
NH4+-N | mg/L | 12–120 | - |
TN | mg/L | 20–120 | 5–75 b |
TP | mg/L | 2–23 | 2–20 |
K | mg/L | 7–15 | |
FC | MPN/100 mL | 103–108 | <103 c |
C/N | - | 66.7–1.0 b | - |
N:P:K | - | 2.9–4.7:0.6–0.8 d:1.0 |
Zone | Region | Water Used for Agricultural Activities | Reclaimed Wastewater (m3/s) | Reclaimed Wastewater Recycling in Agricultural Activities (%) | |||
---|---|---|---|---|---|---|---|
m3/s | % a | Municipal | Livestock | Municipal b | Livestock c | ||
North | Arica y Parinacota, Tarapacá; | 8.926 | 56.7 | 1.154 | - | 12.9 | - |
Antofagasta | 3.308 | 14.8 | 1.110 | - | 33.6 | - | |
Atacama | 12.033 | 79.6 | 0.596 | - | 5.0 | - | |
Coquimbo | 27.194 | 84.9 | 1.091 | 0.003 | 4.0 | 100 | |
Central | Valparaíso | 42.438 | 30.0 | 3.878 | - | 9.1 | - |
O’higgins | 97.964 | 12.8 | 1.386 | 0.147 | 1.4 | 89.5 | |
Maule | 166.489 | 11.0 | 2.559 | 0.012 | 1.5 | 50.0 | |
Biobio | 69.436 | 4.6 | 4.008 | 0.031 | 5.8 | 77.8 | |
Araucanía | 11.512 | 78.5 | 2.077 | - | 18.0 | - | |
Metropolitana | 82.361 | 34.2 | 16.774 | 0.153 | 20.4 | 69.0 | |
Los Ríos; Los Lagos | 3.308 | 0.8 | 2.121 | - | 64.1 | - | |
South | Aysén | 0.644 | 0.2 | 0.206 | - | 32.0 | - |
Magallanes | 1.119 | 1.3 | 0.425 | - | 38.0 | - | |
Total | 526.732 | - | 37.385 | 0.343 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villamar, C.-A.; Vera-Puerto, I.; Rivera, D.; De la Hoz, F. Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment. Water 2018, 10, 817. https://doi.org/10.3390/w10060817
Villamar C-A, Vera-Puerto I, Rivera D, De la Hoz F. Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment. Water. 2018; 10(6):817. https://doi.org/10.3390/w10060817
Chicago/Turabian StyleVillamar, Cristina-Alejandra, Ismael Vera-Puerto, Diego Rivera, and Felipe De la Hoz. 2018. "Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment" Water 10, no. 6: 817. https://doi.org/10.3390/w10060817
APA StyleVillamar, C. -A., Vera-Puerto, I., Rivera, D., & De la Hoz, F. (2018). Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment. Water, 10(6), 817. https://doi.org/10.3390/w10060817