Spatiotemporal Variability in Extreme Precipitation in China from Observations and Projections
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data
2.3. Methodology
3. Results
3.1. Spatial Patterns for Extreme Precipitation
3.2. Temporal Changes in Extreme Precipitation
3.3. Projection of Extreme Precipitation Changes from 2011 to 2100
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Index | BCC-CSM1 | BNU-ESM | FGOALS-g2 | GFDL-ESM2M | NorESM | Average of the Five Models |
---|---|---|---|---|---|---|
Rainfall | 0.71 | 0.64 | 0.58 | 0.60 | 0.63 | 0.68 |
R10 | 0.71 | 0.67 | 0.62 | 0.73 | 0.66 | 0.73 |
R20 | 0.72 | 0.56 | 0.55 | 0.54 | 0.51 | 0.64 |
R50 | 0.60 | 0.34 | 0.56 | 0.24 | 0.20 | 0.49 |
SDII | 0.58 | 0.52 | 0.60 | 0.58 | 0.54 | 0.60 |
R95d | 0.63 | 0.69 | 0.39 | 0.64 | 0.79 | 0.71 |
R95p | 0.81 | 0.65 | 0.61 | 0.53 | 0.67 | 0.73 |
R95pt | 0.76 | 0.67 | 0.63 | 0.71 | 0.81 | 0.81 |
AEPI | 0.81 | 0.67 | 0.71 | 0.67 | 0.73 | 0.79 |
Index | BCC-CSM1 | BNU-ESM | FGOALS-g2 | GFDL-ESM2M | NorESM | Average of the Five Models |
---|---|---|---|---|---|---|
Rainfall | 589.47 | 738.52 | 601.61 | 641.43 | 754.14 | 602.67 |
R10 | 16.71 | 25.88 | 15.91 | 17.10 | 24.35 | 17.36 |
R20 | 7.70 | 10.29 | 9.05 | 9.70 | 12.16 | 8.32 |
R50 | 2.38 | 3.18 | 2.89 | 3.11 | 3.49 | 2.78 |
SDII | 4.86 | 4.79 | 5.42 | 4.86 | 4.92 | 4.88 |
R95d | 5.04 | 5.56 | 5.12 | 4.55 | 5.01 | 4.83 |
R95p | 130.93 | 150.02 | 152.36 | 174.48 | 153.20 | 134.06 |
R95pt | 4.84 | 6.02 | 4.76 | 5.29 | 4.98 | 4.14 |
AEPI | 25.71 | 34.27 | 31.84 | 31.69 | 31.82 | 30.24 |
Index | Trend | NE | NC | NW | SE | SW | TP | China |
---|---|---|---|---|---|---|---|---|
Rainfall | positive | 1.62 | 1.35 | 8.34 | 10.77 | 1.35 | 4.04 | 27.46 |
negative | 0.00 | 0.54 | 0.00 | 0.13 | 1.88 | 0.00 | 2.56 | |
R10 | positive | 1.21 | 1.08 | 6.33 | 9.02 | 0.67 | 3.63 | 21.94 |
negative | 0.27 | 1.08 | 0.13 | 0.00 | 2.56 | 0.00 | 4.04 | |
R20 | positive | 0.67 | 1.08 | 3.50 | 10.90 | 1.62 | 2.02 | 19.78 |
negative | 0.94 | 1.62 | 0.40 | 0.13 | 1.48 | 0.13 | 4.71 | |
R50 | positive | 0.40 | 1.48 | 0.13 | 7.00 | 3.23 | 0.00 | 12.25 |
negative | 0.40 | 1.48 | 0.00 | 0.40 | 1.21 | 0.00 | 3.50 | |
SDII | positive | 0.00 | 0.54 | 1.08 | 13.19 | 3.63 | 0.13 | 18.57 |
negative | 5.25 | 3.63 | 0.27 | 0.40 | 0.27 | 0.40 | 10.23 | |
R95d | positive | 0.67 | 0.94 | 4.04 | 8.48 | 2.29 | 2.56 | 18.98 |
negative | 0.13 | 2.15 | 0.13 | 0.40 | 1.35 | 0.13 | 4.31 | |
R95p | positive | 0.94 | 0.54 | 4.31 | 7.54 | 2.69 | 2.29 | 18.30 |
negative | 0.13 | 1.75 | 0.13 | 0.13 | 0.81 | 0.13 | 3.10 | |
R95pT | positive | 0.54 | 1.48 | 1.75 | 5.38 | 3.23 | 0.94 | 13.32 |
negative | 0.54 | 2.56 | 0.13 | 0.00 | 0.54 | 0.13 | 3.90 | |
AEPI | positive | 1.21 | 1.35 | 3.77 | 4.85 | 2.15 | 1.35 | 14.67 |
negative | 1.08 | 1.62 | 0.13 | 0.94 | 0.27 | 0.13 | 4.17 |
References
- Hartmann, D.L.; Klein Tank, A.M.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and Surface. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 159–254. [Google Scholar]
- Frich, P.; Alexander, L.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Stepaniak, D.P. Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Clim. 2003, 16, 3691–3705. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth. Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef]
- Kirtman, B.; Power, S.B.; Adedoyin, J.A.; Boer, G.J.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.J.; Fiore, A.M.; Kimoto, M.; Meehl, G.A.; et al. Near-term climate change: Projections and predictability. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 953–1028. [Google Scholar]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.; Johns, T.; Krinner, G. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1029–1136. [Google Scholar]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The future intensification of hourly precipitation extremes. Nat. Clim. Chang. 2016, 7, 48–52. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. Addendum: More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2017, 7, 154–158. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Peterson, T.C.; Zhang, X.; Brunet-India, M.; Vázquez-Aguirre, J.L. Changes in North American extremes derived from daily weather data. J. Geophys. Res. 2008, 113, 1829–1836. [Google Scholar] [CrossRef]
- Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciação, Y.M.T.; Baez, J.; Barros, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G.; et al. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Clim. 2006, 19, 1490–1512. [Google Scholar] [CrossRef]
- Aguilar, E.; Barry, A.A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; Nascimento, D.J.D.; Peterson, T.C. Changes in temperature and precipitation extremes in Western Central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. 2009, 114, 356–360. [Google Scholar] [CrossRef]
- Vincent, L.A.; Aguilar, E.; Saindou, M.; Hassane, A.F.; Jumaux, G.; Roy, D.; Booneeady, P.; Virasami, R.; Randriamarolaza, L.Y.A.; Faniriantsoa, F.R. Observed trends in indices of daily and extreme temperature and precipitation for the countries of the Western Indian Ocean, 1961–2008. J. Geophys. Res. 2011, 116, 521–541. [Google Scholar] [CrossRef]
- He, J.; Soden, B.J. A re-examination of the projected subtropical precipitation decline. Nat. Clim. Chang. 2017, 7, 53–57. [Google Scholar] [CrossRef]
- Bao, J.; Sherwood, S.C.; Alexander, L.V.; Evans, J.P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Chang. 2017, 7, 128–132. [Google Scholar] [CrossRef]
- Shi, P.; Kong, F.; Fang, J. Spatio-temporal patterns of China decadal storm rainfall. Sci. Geogr. Sin. 2014, 34, 1281–1290. [Google Scholar]
- Jiang, C.Y.; Wei, N.; Cheng, X.X.; Fang, J.G.; Sun, X. Analysis of inter-annual temperature and precipitation regional change during 1961–2008 in Shaanxi Province. Res. Soil. Water. Conser. 2011, 18, 197–186. [Google Scholar]
- Yao, C.; Yang, S.; Qian, W.; Lin, Z.; Wen, M. Regional summer precipitation events in Asia and their changes in the past decades. J. Geophys. Res. 2008, 113, 487–497. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Hallett, J. Climate change 2001: The scientific basis. Edited by J. T. Houghton, Y. Ding, D. J. Griggs, N. Noguer, P. J. van der Linden, D. Xiaosu, K. Maskell and C. A. Johnson. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge. 2001. 881 pp. ISBN 0521 01495 6. Q. J. Meteorol. Soc. 2007, 128, 1038–1039. [Google Scholar]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Cao, Y.; Xu, D. Temporal and spatial variation in drought and floods in the Huang–Huai–Hai River Basin from 1961 to 2010. Res. Sci. 2015, 10, 2068–2077. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Tan, M.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [Google Scholar] [CrossRef]
- Wen, X.; Fang, G.; Qi, H.; Zhou, L.; Gao, Y. Changes of temperature and precipitation extremes in China: Past and future. Theor. Appl. Climatol. 2016, 126, 369–383. [Google Scholar] [CrossRef]
- Alexander, L.V.; Arblaster, J.M. Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather Clim. Extremes 2017, 15, 34–56. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Lu, G.; Xiao, H.; He, H.; Zhang, J. Regional response of runoff in CMIP5 multi-model climate projections of Jiangsu Province, China. Stoch. Environ. Res. Risk Assess. 2017, 31, 2627–2643. [Google Scholar] [CrossRef]
- Janssen, E.; Sriver, R.; Wuebbles, D.; Kunkel, K. Seasonal and regional variations in extreme precipitation event frequency using CMIP5. Geophys. Res. Lett. 2016, 43, 5385–5393. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Acquaotta, F.; Fratianni, S.; Venema, V. Assessment of parallel precipitation measurements networks in Piedmont, Italy. Int. J. Climatol. 2016, 36, 3963–3974. [Google Scholar] [CrossRef]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, A.R. Changes in precipitation and temperature extremes in Central America and Northern South America, 1961–2003. J. Geophys. Res. 2005, 110, 3233–3250. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Redmond, K.; Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 2003, 30, 51–54. [Google Scholar] [CrossRef]
- Zandonadi, L.; Acquaotta, F.; Fratianni, S.; Zavattini, J.A. Changes in precipitation extremes in Brazil (Paraná River Basin). Theor. Appl. Climatol. 2016, 123, 741–756. [Google Scholar] [CrossRef]
- Liping, D.; Qianqian, W. On the relationship between precipitation anomalies in the first raining season (April–June) in Southern China and SST over offshore waters in China. J. Trop. Meteorol. 2002, 18, 45–55. [Google Scholar]
- Wang, B.; LinHo. Rainy season of the Asian–Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef]
- Choi, G.; Collins, D.; Ren, G.; Trewin, B.; Baldi, M.; Fukuda, Y.; Afzaal, M.; Pianmana, T.; Gomboluudev, P.; Huong, P.T.T.; et al. Changes in means and extreme events of temperature and precipitation in the Asia–Pacific network region, 1955–2007. Int. J. Climatol. 2009, 29, 1906–1925. [Google Scholar] [CrossRef]
- Tank, A.M.G.K.; Können, G.P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Fatichi, S.; Caporali, E. A comprehensive analysis of changes in precipitation regime in Tuscany. Int. J. Climatol. 2009, 29, 1883–1893. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Jiang, Z.H.; Wang, P.X.; Chen, Y.S. Temporal and spatial characteristic of extreme precipitation event in China. Clim. Environ. Res. 2008, 13, 75–83. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Extreme climate events and agricultural climate indices in China: CMIP5 model evaluation and projections. Int. J. Climatol. 2016, 36, 43–61. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank correlation methods. Econometrica 1957, 25, 181–183. [Google Scholar] [CrossRef]
- Nicholls, N. The insignificance of significance testing. Bull. Amer. Meteorol. Soc. 2001, 82, 981–986. [Google Scholar] [CrossRef]
- Clarke, R.T. On the (mis)use of statistical methods in hydro-climatological research. Hydrol. Sci. J. 2010, 55, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, B.; Liu, J.; Yang, M. Analysis of the spatiotemporal distribution of precipitation in Zhangye City using Mann–Kendall method. Res. Sci. 2009, 31, 501–508. [Google Scholar]
- Brunetti, M.; Buffoni, L.; Mangianti, F.; Maugeri, M.; Nanni, T. Temperature, precipitation and extreme events during the last century in Italy. Glob. Planet. Chang. 2004, 40, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Wang, D.; Cao, Y. Spatiotemporal characteristics of precipitation concentration and their possible links to urban extent in China. Theor. Appl. Climatol. 2016, 123, 757–768. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett. 2005, 32, L09707. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Dong, W. Assessing the uncertainty of CESM-LE in simulating the trends of mean and extreme temperature and precipitation over China. Int. J. Climatol. 2017, 37, 2101–2110. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Kadari, A.; Mekala, S.R.; Wagner, N.; Malan, D.; Köth, J.; Doll, K.; Stappert, L.; Eckert, D.; Peitz, M.; Matthes, J. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar]
- Zhang, X.; Wan, H.; Zwiers, F.W.; Hegerl, G.C.; Min, S.K. Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett. 2013, 40, 5252–5257. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.K.; Wilcox, K.; Bahn, M.; Smith, M.D.; Vicca, S.; Fatichi, S.; Zscheischler, J.; et al. Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences 2018, 15, 3421–3437. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
ID | Model | Source | Temporal Resolution | Number of Pixels |
---|---|---|---|---|
1 | BCC-CSM-1-1 | Beijing Climate Center, China Meteorological Administration, China | Daily | 64 × 128 |
2 | BNU-ESM | Beijing Normal University, China | Daily | 64 × 128 |
3 | FGOALS-g2 | Institute of Atmospheric Physics, Chinese Academy of Sciences, China | Daily | 60 × 128 |
4 | GFDL-ESM2M | Geophysical Fluid Dynamics Laboratory, USA | Daily | 90 × 144 |
5 | NorESM1-M | Bjerknes Centre for Climate Research, Norwegian Meteorological Institute, Norway | Daily | 96 × 144 |
Indices | Description | Units |
---|---|---|
R10 | Number of days per year with precipitation amount ≥ 10 mm | day |
R20 | Number of days per year with precipitation amount ≥ 20 mm | day |
R50 | Number of days per year with precipitation amount ≥ 50 mm | day |
SDII | Average daily precipitation amount on wet days with RR ≥ 1 mm where RR is the daily precipitation amount on a wet day. | mm/day |
R95d | Number of days with P > 95th percentile during the whole year | day |
R95p | Fraction of annual total precipitation due to events exceeding the 95th percentile | mm |
R95pT | Ratio of extreme precipitation total to rainfall in rainy days (daily precipitation > 1 mm) | % |
AEPI | Absolute intensity of extreme precipitation | mm/day |
Index (Units) | Region | ||||||
---|---|---|---|---|---|---|---|
NE | NC | NW | SE | SW | TP | China | |
Rainfall (mm) | 581.98 | 500.19 | 125.19 | 1453.02 | 1082.64 | 353.51 | 860.41 |
R10 (day) | 17.05 | 4.71 | 2.68 | 41.33 | 31.59 | 9.37 | 22.05 |
R20 (day) | 7.36 | 6.32 | 0.6 | 21.61 | 14.04 | 1.63 | 9.83 |
R50 (day) | 1.19 | 1.05 | 0.02 | 4.86 | 2.44 | 0.01 | 1.85 |
SDII (mm/day) | 6.73 | 6.37 | 2.52 | 10.08 | 6.92 | 3.62 | 6.5 |
R95d (day) | 2.84 | 2.5 | 1.13 | 5.08 | 5.12 | 2.86 | 3.6 |
R95p (mm) | 149.51 | 149.51 | 25.04 | 385.63 | 279.07 | 63.45 | 194.85 |
R95pT (%) | 49.29 | 22.99 | 15.96 | 74.57 | 53.68 | 18.58 | 46.17 |
AEPI (mm/day) | 23.83 | 44.89 | 12.48 | 25.31 | 24.41 | 16.61 | 22.19 |
Index (units) | Region | ||||||
---|---|---|---|---|---|---|---|
NE | NC | NW | SE | SW | TP | China | |
Rainfall (mm/decade) | 11.58 | 3.23 | 13.86 * | 31.11 * | −3.12 | 25.66 * | 14.86 * |
R10 (day/decade) | 0.18 | 0.06 | 0.31 * | 0.66 * | −0.21 | 0.6 * | 0.29 * |
R20 (day/decade) | 0.04 | 0.01 | 0.07 * | 0.55 * | −0.05 | 0.09 * | 0.2 * |
R50 (day/decade) | 0.02 | −0.01 | 0.003 * | 0.2 * | 0.03 | 0.003 | 0.07 * |
SDII (mm/day/decade) | −0.25 | −0.12 | −0.01 | 0.21 * | 0.08 * | −0.07 | 0.02 |
R95d (day/decade) | 0.04 | −0.01 | 0.15 * | 0.21 * | 0.06 * | 0.22 * | 0.11 * |
R95p (mm/decade) | 1.99 | −0.93 | 3.30 * | 17.58 * | 4.22 * | 4.79 * | 7.03 * |
R95pT (pct/decade) | −0.20 | −0.34 | 0.58 * | 0.63 * | 0.45 * | 0.29 | 0.25 |
AEPI (mm/day/decade) | 0.00 | −0.27 | 0.90 * | 0.59 * | 0.33 * | 0.54 * | 0.31 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhao, X.; Wu, D.; Tang, B.; Xu, P.; Du, X.; Wang, H. Spatiotemporal Variability in Extreme Precipitation in China from Observations and Projections. Water 2018, 10, 1089. https://doi.org/10.3390/w10081089
Peng Y, Zhao X, Wu D, Tang B, Xu P, Du X, Wang H. Spatiotemporal Variability in Extreme Precipitation in China from Observations and Projections. Water. 2018; 10(8):1089. https://doi.org/10.3390/w10081089
Chicago/Turabian StylePeng, Yifeng, Xiang Zhao, Donghai Wu, Bijian Tang, Peipei Xu, Xiaozheng Du, and Haoyu Wang. 2018. "Spatiotemporal Variability in Extreme Precipitation in China from Observations and Projections" Water 10, no. 8: 1089. https://doi.org/10.3390/w10081089
APA StylePeng, Y., Zhao, X., Wu, D., Tang, B., Xu, P., Du, X., & Wang, H. (2018). Spatiotemporal Variability in Extreme Precipitation in China from Observations and Projections. Water, 10(8), 1089. https://doi.org/10.3390/w10081089