A Hooked-Collar for Bridge Piers Protection: Flow Fields and Scour
Abstract
:1. Introduction
2. Experimental Setup and Procedure
3. Numerical Simulations
3.1. Model Setup
3.2. Model Validation
4. Experimental Results
4.1. Hooked-Collar on Scour
4.2. Numerical Results
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
b | pier diameter |
w | hooked collar width |
h | hooked collar height |
scour depth | |
medium grain diameter | |
grain size for which 84% of the bed is finer | |
grain size for which 16% of the bed is finer | |
H | flow depth |
k | turbulent kinetic energy |
time averaged streamwise velocity u | |
time averaged transverse velocity | |
time averaged vertical velocity w | |
geometric standard deviation | |
g | gravity acceleration (m s) |
vorticity magnitude | |
S | strain-rate magnitude |
References
- Lee, C.H.; Xu, C.; Huang, Z. A three-phase flow simulation of local scour caused by a submerged wall jet with a water-air interface. Adv. Water Resour. 2017. [Google Scholar] [CrossRef]
- Melville, B.W.; Coleman, S.E. Bridge Scour; Water Resources Publications, LLC: Highlands Ranch, CO, USA, 2000. [Google Scholar]
- Das, S.; Das, R.; Mazumdar, A. Circulation characteristics of horseshoe vortex in scour region around circular piers. Water Sci. Eng. 2013, 6, 59–77. [Google Scholar] [CrossRef]
- Mete, K.; George, C. An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, D.C. Protecting bridge piers with loose rock riprap. J. Appl. Water Eng. Res. 2013, 1, 39–57. [Google Scholar] [CrossRef]
- Hamidifar, H.; Omid, M.H.; Nasrabadi, M. Reduction of scour using a combination of riprap and bed sill. Proc. Inst. Civ. Eng.-Water Manag. 2017, 1–7. [Google Scholar] [CrossRef]
- Lauchlan, C.S.; Melville, B.W. Riprap protection at bridge piers. J. Hydraul. Eng. 2001, 127, 412–418. [Google Scholar] [CrossRef]
- Chiew, Y.M.; Lim, F.H. Failure behavior of riprap layer at bridge piers under live-bed conditions. J. Hydraul. Eng. 2000, 126, 43–55. [Google Scholar] [CrossRef]
- Yoon, T.H.; Yoon, S.B.; Yoon, K.S. Design of Riprap for Scour Protection around Bridge Piers. In Proceedings of the 26th IAHR Congress, London, UK, 11–15 September 1995. [Google Scholar]
- Mashahir, M.B.; Zarrati, A.R.; Mokallaf, E. Application of riprap and collar to prevent scouring around rectangular bridge piers. J. Hydraul. Eng. 2010, 136, 183–187. [Google Scholar] [CrossRef]
- Alabi, P.D. Time Development of Local Scour at a Bridge Pier Fitted with a Collar. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2006. [Google Scholar]
- Chiew, Y. Scour protection at bridge piers. J. Hydraul. Eng. 1992, 118, 1260–1269. [Google Scholar] [CrossRef]
- Kumar, V.; Raju, K.G.R.; Vittal, N. Reduction of local scour around bridge piers using slots and collars. J. Hydraul. Eng. 1999, 125, 1302–1305. [Google Scholar] [CrossRef]
- Singh, C.P.; Setia, B.; Verma, D.V.S. Collar-sleeve combination as a scour protection device around a circular pier. In Proceedings of the 29th IAHR Congress, Beijing, China, 16–21 September 2001. [Google Scholar]
- Zarrati, A.R.; Gholami, H.; Mashahir, M.B. Application of collar to control scouring around rectangular bridge piers. J. Hydraul. Res. 2004, 42, 97–103. [Google Scholar] [CrossRef]
- Zarrati, A.R.; Nazariha, M.; Mashahir, M.B. Reduction of local scour in the vicinity of bridge pier groups using collars and riprap. J. Hydraul. Eng. 2006, 132, 154–162. [Google Scholar] [CrossRef]
- Khosravinia, P.; Malekpour, A.; Hosseinzadehdalir, A.; Farsadizadeh, D. Effect of trapezoidal collars as a scour countermeasure around wing-wall abutments. Water Sci. Eng. 2018, 11, 53–60. [Google Scholar] [CrossRef]
- Chen, S.C.; Wang, D.; Chou, H.; Yen, S. The Efficacy of hooked-collar on reducing bridge pier scour. J. Taiwan Water Conserv. 2007, 55, 26–37. [Google Scholar]
- Chiew, Y.M.; Melville, B.W. Local scour around bridge piers. J. Hydraul. Res. 1987, 25, 15–26. [Google Scholar] [CrossRef]
- Burkow, M.; Griebel, M. A full three dimensional numerical simulation of the sediment transport and the scouring at a rectangular obstacle. Comput. Fluids 2016, 125, 1–10. [Google Scholar] [CrossRef]
- Xiong, W.; Tang, P.; Kong, B.; Cai, C. Reliable bridge scour simulation using Eulerian two-phase flow theory. J. Comput. Civ. Eng. 2016, 30, 04016009. [Google Scholar] [CrossRef]
- Török, G.; Baranya, S.; Rüther, N. 3D CFD modeling of local scouring, bed armoring and sediment deposition. Water 2017, 9, 56. [Google Scholar] [CrossRef]
- Cheng, Z.; Koken, M.; Constantinescu, G. Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour. Adv. Water Resour. 2017. [Google Scholar] [CrossRef]
- Kirkil, G.; Constantinescu, G.; Ettema, R. Detached eddy simulation investigation of turbulence at a circular pier with scour hole. J. Hydraul. Eng. 2009, 135, 888–901. [Google Scholar] [CrossRef]
- Flow Science. Flow-3D User Manual: v10.1; Flow Science, Inc.: Santa Fe, NM, USA, 2012. [Google Scholar]
- Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, F.J.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [Google Scholar] [CrossRef]
- Muzzammil, M.; Alama, J.; Danish, M. Scour prediction at bridge piers in cohesive bed using gene expression programming. Aquat. Procedia 2015, 4, 789–796. [Google Scholar] [CrossRef]
- Nouri Imamzadehei, A.; Heidarpour, M.; Nouri Imamzadehei, M.; Ghorbani, B.; Haghiabi, A. Control of the local scouring around the cylindrical bridge pier using armed soil by geotextile. Int. J. Geosynth. Ground Eng. 2016, 2, 5. [Google Scholar] [CrossRef]
- Zarrati, A.R.; Chamani, M.R.; Shafaie, A.; Latifi, M. Scour countermeasures for cylindrical piers using riprap and combination of collar and riprap. Int. J. Sediment Res. 2010, 25, 313–322. [Google Scholar] [CrossRef]
- Baykal, C.; Sumer, B.M.; Fuhrman, D.R.; Jacobsen, N.G.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng. 2017, 122, 87–107. [Google Scholar] [CrossRef]
- Kolář, V. Vortex identification: New requirements and limitations. Int. J. Heat Fluid Flow 2007, 28, 638–652. [Google Scholar] [CrossRef]
- Dey, S. Time-variation of scour in the vicinity of circular piers. Proc. Inst. Civ. Eng. Water Marit. Energy 1999, 136, 67–75. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-C.; Tfwala, S.; Wu, T.-Y.; Chan, H.-C.; Chou, H.-T. A Hooked-Collar for Bridge Piers Protection: Flow Fields and Scour. Water 2018, 10, 1251. https://doi.org/10.3390/w10091251
Chen S-C, Tfwala S, Wu T-Y, Chan H-C, Chou H-T. A Hooked-Collar for Bridge Piers Protection: Flow Fields and Scour. Water. 2018; 10(9):1251. https://doi.org/10.3390/w10091251
Chicago/Turabian StyleChen, Su-Chin, Samkele Tfwala, Tsung-Yuan Wu, Hsun-Chuan Chan, and Hsien-Ter Chou. 2018. "A Hooked-Collar for Bridge Piers Protection: Flow Fields and Scour" Water 10, no. 9: 1251. https://doi.org/10.3390/w10091251
APA StyleChen, S. -C., Tfwala, S., Wu, T. -Y., Chan, H. -C., & Chou, H. -T. (2018). A Hooked-Collar for Bridge Piers Protection: Flow Fields and Scour. Water, 10(9), 1251. https://doi.org/10.3390/w10091251