White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania
Abstract
:1. Introduction
2. Fluoride Contamination in Tanzania
3. The Kilimanjaro Concept
3.1. Overview of RWH in Tanzania
3.2. General Aspects
3.3. Design Aspects
3.4. Environmental Aspects
4. Rainwater Harvesting in Tanzania: Potential and Perceptions
4.1. Perceptions of People on RWH Technology
4.1.1. Rainwater Quantity
4.1.2. Rainwater Quality
4.1.3. RWH System Construction, Maintenance, and Promotion
4.2. Potential of RWH in Tanzania: the Case of NM-AIST
5. Water Treatment
5.1. Physico-Chemical and Microbial Quality of Rainwater
5.2. Appropriate Low-Cost Water Treatment Methods
5.2.1. Biochar-Based Water Filters
5.2.2. Metallic Iron Water Filters
5.2.3. Biochar–Metal Iron Dual Water Filtration Systems
6. Water Analysis
7. Mineralization of Treated Water
8. Concluding Remarks and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sachs, J.D. Achieving the Sustainable Development Goals. J. Int. Bus. Ethics 2015, 8, 53–62. [Google Scholar]
- Gleick, P. The human right to water. Water Policy 1999, 1, 487–503. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Hussam, A. Contending with a development disaster: SONO Filters remove arsenic from well water in Bangladesh. Innovations 2009, 4, 89–102. [Google Scholar] [CrossRef]
- Noubactep, C.; Schöner, A.; Woafo, P. Metallic iron filters for universal access to safe drinking water. Clean-Soil Air Water 2009, 37, 930–937. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Mukharjee, A.; Sengupta, M.K.; Ahamed, S.; Das, B.; Nayak, B.; Pal, A.; Rahman, M.M.; Chakraborti, D. Million dollar arsenic removal plants in West Bengal, India: Useful or not? Water Qual. Res. J. Can. 2006, 41, 216–225. [Google Scholar] [CrossRef]
- Indermitte, E.; Saava, A.; Karro, E. Reducing exposure to high fluoride drinking water in Estonia—A countrywide study. Int. J. Environ. Res. Public Health 2014, 11, 3132–3142. [Google Scholar] [CrossRef] [PubMed]
- Wagutu, A.W.; Machunda, R.; Jande, Y.A.C. Crustacean derived calcium phosphate systems: Application in defluoridation of drinking water in East African rift valley. J. Hazard. Mater. 2018, 347, 95–105. [Google Scholar] [CrossRef]
- Winde, F.; van der Walt, I.J. The significance of groundwater–stream interactions and fluctuating stream chemistry on waterborne uranium contamination of streams—A case study from a gold mining site in South Africa. J. Hydrol. 2004, 287, 178–196. [Google Scholar] [CrossRef]
- Kalin, M.; Wheeler, W.N.; Meinrath, G. The removal of uranium from mining waste water using algal/microbial biomass. J. Environ. Radioact. 2005, 78, 151–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Upper Saddle River, NJ, USA, 1997; 600p. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; A.A. Balkema: Rotterdam, The Netherland, 2005; 536p. [Google Scholar]
- Heimann, S. Testing granular iron for fluoride removal. Freiberg Online Geosci. 2018, 52, 1–80. [Google Scholar]
- Heimann, S.; Ndé-Tchoupé, A.I.; Hu, R.; Licha, T.; Noubactep, C. Investigating the suitability of Fe0 packed-beds for water defluoridation. Chemosphere 2018, 209, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Oladoja, N.A.; Bello, G.A.; Obisesan, S.V.; Helmreich, B.; Ogunniyi, J.A.; Daramola, O.A.; Bello, H.A.; Anthony, E.T.; Saliu, T.D. Insight into the defluoridation efficiency of lateritic soil. Environ. Progr. Sust. Energy 2018. [CrossRef]
- Ndé-Tchoupé, A.I.; Nanseu-Njiki, C.P.; Hu, R.; Nassi, A.; Noubactep, C.; Licha, T. Characterizing the reactivity of metallic iron for water defluoridation in batch studies. Chemosphere 2019, 219, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Boruff, C.S. Removal of fluoride from drinking waters. Ind. Eng. Chem. 1936, 26, 69–71. [Google Scholar] [CrossRef]
- Maier, F.J. Methods of removing fluorides from water. Am. J. Public Health 1947, 37, 1559–1566. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Van Reeuwijk, L.P.; Frapporti, G.; Louws, R.J.; Schuiling, R.D. A simple method for defluoridation of drinking water at village level by adsorption on Ando soil in Kenya. Sci. Total Environ. 1996, 188, 225–232. [Google Scholar] [CrossRef]
- Mjengera, H.; Mkongo, G. Appropriate defluoridation technology for use in flourotic areas in Tanzania. Phys. Chem. Earth Parts A/B/C 2003, 28, 1097–1104. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride removal from water by adsorption: A review. Chem. Eng. J. 2011, 171, 811–840. [Google Scholar] [CrossRef]
- Carstairs, C. Debating water fluoridation before Dr. Strangelove. Am. J. Public Health 2015, 105, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Dahi, E. Africa’s U-Turn in defluoridation policy: From the Nalgonda technique to bone char. Res. Rep. Fluoride 2016, 49 Pt 1, 401–416. [Google Scholar]
- Marwa, J.; Lufingo, M.; Noubactep, C.; Machunda, R. Defeating fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a rainwater harvesting park. Sustainability 2018, 10, 4194. [Google Scholar] [CrossRef]
- Ngigi, S.N. What is the limit of up-scaling rainwater harvesting in a river basin? Phys. Chem. Earth A B C 2003, 28, 943–956. [Google Scholar] [CrossRef]
- Kahinda, J.M.; Lillie, E.S.B.; Taigbenu, A.E.; Taute, M.; Boroto, R.J. Developing suitability maps for rainwater harvesting in South Africa. Phys. Chem. Earth A B C 2008, 33, 788–799. [Google Scholar] [CrossRef]
- Vohland, K.; Barry, B. A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agric. Ecosyst. Environ. 2009, 131, 119–127. [Google Scholar] [CrossRef]
- Van Meter, K.J.; Basu, N.B.; Tate, E.; Wyckoff, J. Monsoon harvests: The living legacies of rainwater harvesting systems in South India. Environ. Sci. Technol. 2014, 48, 4217–4225. [Google Scholar] [CrossRef] [PubMed]
- Nichols, W.R. Water Supply, Considered Mainly from a Chemical and Sanitary Standpoint; John Wiley & Sons: New York, NY, USA, 1883; 260p. [Google Scholar]
- Tucker, W.G. The purification of water by chemicaltreatment. Science 1892, 20, 34–38. [Google Scholar] [CrossRef]
- Baker, M. Sketch of the history of water treatment. Am. Water Works Assoc. 1934, 26, 902–938. [Google Scholar] [CrossRef]
- Howe, K.J.; Hand, D.W.; Crittenden, J.C.; Trussell, R.R.; Tchobanoglous, G. Principles of Water Treatment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; 674p. [Google Scholar]
- Meinrath, G.; Merkel, B.; Ödegaard-Jensen, A.; Ekberg, C. Sorption of iron on surfaces: Modelling, data evaluation and measurement uncertainty. Acta hydrochim. Hydrobiol. 2004, 32, 154–160. [Google Scholar] [CrossRef]
- Sperlich, A.; Werner, A.; Genz, A.; Amy, G.; Worch, E.; Jekel, M. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: Modeling and experimental approaches. Water Res. 2005, 39, 1190–1198. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment; Walter de Gruyter GmbH & Co., KG: Berlin, Germany; Boston, MA, USA, 2012; 345p. [Google Scholar]
- Moraci, N.; Lelo, D.; Bilardi, S.; Calabrò, P.S. Modeling long-term hydraulic conductivity behaviour of zero valent iron column tests for permeable reactive barrier design. Can. Geotech. J. 2016, 53, 946–961. [Google Scholar] [CrossRef]
- Noubactep, C. Predicting the hydraulic conductivity of metallic iron filters: Modeling gone astray. Water 2016, 8, 162. [Google Scholar] [CrossRef]
- Brimicombe, A. GIS, Environmental Modeling and Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; 378p. [Google Scholar]
- Holzbecher, E. Environmental Modeling: Using MATLAB; Springer: Berlin, Germany, 2012. [Google Scholar]
- World Bank. Reaching for the SDGs: The Untapped Potentialof Tanzania’s Water Supply, Sanitation, and Hygiene Sector. WASH Poverty Diagnostic; World Bank: Washington, DC, USA, 2018; Available online: www.worldbank.org (accessed on 4 December 2018).
- Ndé-Tchoupé, A.I.; Crane, R.A.; Mwakabona, H.T.; Noubactep, C.; Njau, K.N. Technologies for decentralized fluoride removal: Testing metallic iron-based filters. Water 2015, 7, 6750–6774. [Google Scholar] [CrossRef]
- Pittalis, D. Interdisciplinary Studies for the Knowledge of the Groundwater Fluoride Contamination in the Eastern African Rift: Meru District-North Tanzania. Ph.D. Thesis, University of Sassari, Sassari, Italy, 2010. [Google Scholar]
- Bhattacharya, P.; Lesafi, F.; Filemon, R.; Ligate, F.; Ijumulana, J.; Mtalo, F. Geogenic fluoride and arsenic contamination in the groundwater environments in Tanzania. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 17–22 April 2016; Volume 18, p. 16677. [Google Scholar]
- Malago, J.; Makoba, E.; Muzuka, A.N.N. Fluoride levels in surface and groundwater in Africa: A review. Am. J. Water Sci. Eng. 2017, 3, 1–17. [Google Scholar] [CrossRef]
- Mbilinyi, B.P.; Tumbo, S.D.; Mahoo, H.F.; Senkondo, E.M.; Hatibu, N. Indigenous knowledge as decision support tool in rainwater harvesting. Phys. Chem. Earth 2005, 30, 792–798. [Google Scholar] [CrossRef]
- Mwamila, T.B. Rainwater Harvesting Potential and Management Strategies for Sustainable Water Supply in Tanzania. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2016; 168p. [Google Scholar]
- Mwamila, T.; Han, M.; Ndomba, P. Performance evaluation of rainwater harvesting system and strategy for dry season challenge. J. Water Pract. Technol. 2016, 11, 829–837. [Google Scholar] [CrossRef]
- Mwamila, T.B.; Han, M.Y.; Kum, S. Sustainability evaluation of a primary school rainwater demonstration project in Tanzania. J. Water Sanit. Hygiene 2016. [CrossRef]
- Mwamila, T.B.; Katambara, Z.; Han, M.Y. Strategies for household water supply improvement with rainwater harvesting. J. Geosci. Environ. Prot. 2016, 4, 146–158. [Google Scholar] [CrossRef]
- Mwamila, T.B.; Mooyoung, H.; Katambara, Z. Strategy to Overcome Barriers of Rainwater Harvesting, Case Study Tanzania. Geosci. Environ. Prot. 2016, 4, 13–23. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). How Wastewater Treatment Works … The Basics; EPA-833-F 98002; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1984.
- Moglia, M.; Gana, K.; Delbridge, N. Exploring methods to minimize the risk of mosquitoes in rainwater harvesting systems. J. Hydrol. 2016, 543, 324–329. [Google Scholar] [CrossRef]
- Su, M.D.; Lin, C.H.; Chang, L.F.; Kang, J.L.; Lin, M.C. A probabilistic approach to rainwater harvesting systems design and evaluation. Resour. Conserv. Recycl. 2009, 53, 393–399. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Ahsan, A.; Shanableh, A. Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city. Resour. Conserv. Recycl. 2013, 77, 37–43. [Google Scholar] [CrossRef]
- Rahman, M.A.; Wiegand, B.A.; Badruzzaman, A.B.M.; Ptak, T. Hydrogeological analysis of the upper Dupi Tila Aquifer, towards the implementation of a managed aquifer-recharge project in Dhaka City, Bangladesh. Hydrogeol. J. 2013, 21, 1071–1089. [Google Scholar] [CrossRef]
- Gwenzi, W.; Nyamadzawo, G. Hydrological impacts of urbanization and urban roof water harvesting in water-limited catchments: A review. Environ. Process. 2014, 1, 573–593. [Google Scholar] [CrossRef]
- MWLD. National Water Policy; Ministry of Water and Livestock Development: Dar es Salaam, Tanzania, 2002.
- MoWI. National Water Sector Development Strategy—2006 to 2015; Ministry of Water and Irrigation: Dar es Salaam, Tanzania, 2008.
- Water Resources Management Act. Act Supplement No. 11, Gazette of the United Republic of Tanzania No. 20 Volume 90, Dated 15 May 2009; Government Printer: Dar es Salaam, Tanzania, 2009.
- NBS. Basic Facts and Figures on Human Settlements 2012, Tanzania Mainland; National Bureau of Statistics, Ministry of Finance: Dar es Salaam, Tanzania, 2013.
- Malesu, M.; Khaka, E.; Mati, B.; Oduor, A.; Bock, T.D.; Nyabenge, M.; Oduor, V. Mapping the Potentials for Rainwater Harvesting Technologies in Africa: A Gis Overview on Development Domains for The Continent and Nine Selected Countries; Technical Manual No. 7; World Agroforestry Centre (ICRAF), Netherlands Ministry of Foreign Affairs: Nairobi, Kenya, 2006.
- Thomas, T.H.; Martinson, D.B. Roofwater Harvesting: A Handbook for Practitioners; IRC International Water and Sanitation Centre: Delft, The Netherlands, 2007. [Google Scholar]
- Mendez, C.; Klenzendorf, J.B.; Afshar, B.R.; Simmons, M.T.; Barret, M.E.; Kinney, K.A.; Kirisits, M.J. The effect of roofing material on the quality of harvested rainwater. Water Res. 2011, 45, 2049–2059. [Google Scholar] [CrossRef]
- Lee, J.Y.; Bak, G.; Han, M.Y. Quality of roof-harvested rainwater—Comparison of different roofing materials. Environ. Pollut. 2012, 162, 422–429. [Google Scholar] [CrossRef]
- Amin, M.T.; Kim, T.I.; Amin, M.N.; Han, M.Y. Effects of catchment, first flush, storage conditions, and time on microbial quality in rainwater harvesting systems. Water Environ. Res. 2013, 85, 2317–2329. [Google Scholar] [CrossRef]
- Heyworth, J.S.; Glonek, G.; Maynard, E.J.; Baghurt, P.A.; Finlay-Jones, J. Consumption of untreated tank rainwater and gastroenteritis among young children in South Australia. Int. J. Epidemiol. 2006, 35, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, S.; Sinclair, M.; Cunliffe, D.; Leder, K. A Critical Assessment of Epidemiological Studies for the Investigation of the Health Risk of Drinking Untreated Rainwater. In Rainwater and Urban Design 2007; Engineers Australia: Barton, Australia, 2007; pp. 936–943. Available online: https://search.informit.com.au/documentSummary;dn=889900316059723;res=IELENG (accessed on 28 November 2018).
- Ahmed, W.; Brandes, H.; Gyawali, P.; Sidhu, J.P.; Toze, S. Opportunistic pathogens in roof-captured rainwater samples, determined using quantitative PCR. Water Res. 2014, 15, 361–369. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Hou, P.; Wan, P.; Ouyang, Z. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China. J. Environ. Manag. 2014, 132, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrowsky, P.H.; De Kwaadsteniet, M.; Cloete, T.E.; Khan, W. Distribution of indigenous bacterial pathogens and potential pathogens associated with roof-harvested rainwater. Appl. Environ. Microbiol. 2014, 80, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Dobrowsky, P.H.; van Deventer, A.; De Kwaadsteniet, M.; Ndlovu, T.; Khan, S.; Cloete, T.E.; Khan, W. Prevalence of virulence genes associated with pathogenic Escherichia coli strains isolated from domestically harvested rainwater during low- and high-rainfall periods. Appl. Environ. Microbiol. 2014, 80, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Jesmi, Y.; Rahiman, K.M.; Hatha, A.A.; Deepu, L.; Jyothi, S. Risk assessment of rooftop-collected rainwater for individual household and community use in central Kerala, India. J. Environ. Health. 2014, 76, 114–121. [Google Scholar] [PubMed]
- Lye, D. Rooftop Runoff as a Source of Contamination: A Review. USEPA. 2014 Rainwater Resources. Available online: http://www.rainwaterresources.com/rooftoprunoff-source-contamination-review (accessed on 6 October 2014).
- Gwenzi, W.; Dunjana, N.; Pisa, C.; Tauro, T.; Nyamadzawo, G. Water quality and public health risks associated with roof rainwater harvesting systems for potable supply: Review and perspectives. Sustain. Water Qual. Ecol. 2015, 6, 107–118. [Google Scholar] [CrossRef]
- Chang, M.; McBroom, M.W.; Beasley, R.S. Roofing as a source of nonpoint water pollution. J. Environ. Manag. 2004, 73, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, I.F.; Olabanji, I.O. The physico-chemical and bacteriological quality of rainwater collected over different roofing materials in Ile-Ife, southwestern Nigeria. Chem. Ecol. 2005, 21, 149–166. [Google Scholar] [CrossRef]
- Ahmed, W.; Vieritz, A.; Goonetilleke, A.; Gardner, T. Health risk from the use of roof-harvested rainwater as potable or non-potable water, determined using quantitative microbial risk assessment in Southeast Queensland, Australia. Appl. Environ. Microbiol. 2010, 76, 7382–7391. [Google Scholar] [CrossRef]
- Ahmed, W.; Gardner, T.; Toze, S. Microbiological quality of roof-harvested rainwater and health risks: A review. J. Environ. Qual. 2011, 40, 13–21. [Google Scholar] [CrossRef]
- Ahmed, W.; Sidhu, J.P.; Toze, S. Speciation and frequency of virulence genes of Enterococcus spp. isolated from rainwater tank samples in Southeast Queensland, Australia. Environ. Sci. Technol. 2012, 46, 6843–6850. [Google Scholar] [CrossRef]
- Lauderdale, R.A.; Emmons, A.H. A method for decontaminating small volumes of radioactive water. J. Am. Water Works Assoc. 1951, 43, 327–331. [Google Scholar] [CrossRef]
- Banerji, T.; Chaudhari, S. A cost-effective technology for arsenic removal: Case study of zerovalent iron-based IIT Bombay arsenic filter in West Bengal. In Water and Sanitation in the New Millennium; Nath, K., Sharma, V., Eds.; Springer: New Delhi, India, 2017. [Google Scholar] [CrossRef]
- Mwakabona, H.T.; Ndé-Tchoupé, A.I.; Njau, K.N.; Noubactep, C.; Wydra, K.D. Metallic iron for safe drinking water provision: Considering a lost knowledge. Water Res. 2017, 117, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Makota, S.; Nde-Tchoupe, A.I.; Mwakabona, H.T.; Tepong-Tsindé, R.; Noubactep, C.; Nassi, A.; Njau, K.N. Metallic iron for water treatment: Leaving the valley of confusion. Appl. Water Sci. 2017. [CrossRef]
- Naseri, E.; Ndé-Tchoupé, A.I.; Mwakabona, H.T.; Nanseu-Njiki, C.P.; Noubactep, C.; Njau, K.N.; Wydra, K.D. Making Fe0-based filters a universal solution for safe drinking water provision. Sustainability 2017, 9, 1224. [Google Scholar] [CrossRef]
- Hu, R.; Cui, X.; Gwenzi, W.; Wu, S.; Noubactep, C. Fe0/H2O systems for environmental remediation: The scientific history and future research directions. Water 2018, 10, 1739. [Google Scholar] [CrossRef]
- Hu, R.; Noubactep, C. Iron corrosion: Scientific heritage in jeopardy. Sustainability 2018, 10, 4138. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Mukome, F.; Machado, S.; Nyamasoka, B. Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. J. Environ. Manag. 2016, 150, 250–261. [Google Scholar] [CrossRef]
- Gwenzi, W. Biochar cookstoves as a potential clean energy source for household heating and cooking in developing countries. In Non-Soil Biochar Applications; Kalderis, D., Ntarlagiannis, D., Soupios, P., Eds.; Nova Science Publishers: New York, NY, USA, 2018. [Google Scholar]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U., Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Devonshire, E. The purification of water by means of metallic iron. J. Frankl. Inst. 1890, 129, 449–461. [Google Scholar] [CrossRef]
- Van Craenenbroeck, W. Easton & Anderson and the water supply of Antwerp (Belgium). Ind. Archaeol. Rev. 1998, 20, 105–116. [Google Scholar]
- James, B.R.; Rabenhorst, M.C.; Frigon, G.A. Phosphorus sorption by peat and sand amended with iron oxides or steel wool. Water Environ. Res. 1992, 64, 699–705. [Google Scholar] [CrossRef]
- Harza Environmental Services. Fundamental Aspects of Selenium Removal by Harza Process; Technical Report Prepared under Contract for the Federal-State San Joaquin Valley Drainage Program; Sacramento, CA, USA, 1989. [Google Scholar]
- Khan, A.H.; Rasul, S.B.; Munir, A.K.M.; Habibuddowla, M.; Alauddin, M.; Newaz, S.S.; Hussam, A. Appraisal of a simple arsenic removal method for groundwater of bangladesh. J. Environ. Sci. Health A 2000, 35, 1021–1041. [Google Scholar] [CrossRef]
- Erickson, A.J.; Gulliver, J.S.; Weiss, P.T. Enhanced sand filtration for storm water phosphorus removal. J. Environ. Eng. 2007, 133, 485–497. [Google Scholar] [CrossRef]
- Hussam, A.; Munir, A.K.M. A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health A 2007, 42, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Han, J.; Chiu, P.C.; Jin, Y. Removal and inactivation of waterborne viruses using zerovalent iron. Environ. Sci. Technol. 2005, 39, 9263–9269. [Google Scholar] [CrossRef] [PubMed]
- Tellen, V.; Nkeng, G.; Dentel, S. Improved filtration technology for pathogen reduction in rural water supplies. Water 2010, 2, 285–306. [Google Scholar] [CrossRef]
- Ingram, D.T.; Callahan, M.T.; Ferguson, S.; Hoover, D.G.; Chiu, P.C.; Shelton, D.R.; Millner, P.D.; Camp, M.J.; Patel, J.R.; Kniel, K.E.; et al. Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. J. Appl. Microbiol. 2012, 112, 551–560. [Google Scholar] [CrossRef]
- Shi, Z.; Fan, D.; Johnson, R.L.; Tratnyek, P.G.; Nurmi, J.T.; Wu, Y.; Williams, K.H. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. J. Contam. Hydrol. 2015, 181, 17–35. [Google Scholar] [CrossRef] [Green Version]
- Lefevre, E.; Bossa, N.; Wiesner, M.R.; Gunsch, C.K. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Sci. Tot. Environ. 2016, 565, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Noubactep, C. On the mechanism microbe inactivation by metallic iron. J. Hazard. Mater. 2011, 198, 383–386. [Google Scholar] [CrossRef]
- Cantrell, K.J.; Kaplan, D.I.; Wietsma, T.W. Zero-valent iron for the in situ remediation of selected metals in groundwater. J. Hazard. Mater. 1995, 42, 201–212. [Google Scholar] [CrossRef]
- Ponder, S.; Darab, J.; Mallouk, T. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 2000, 34, 2564–2569. [Google Scholar] [CrossRef]
- Morrison, S.J.; Metzler, D.R.; Dwyer, B.P. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: Reaction progress modeling. J. Contam. Hydrol. 2002, 56, 99–116. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Mcneil, M.S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere 2003, 53, 715–725. [Google Scholar] [CrossRef]
- Bartzas, G.; Komnitsas, K.; Paspaliaris, I. Laboratory evaluation of Fe0 barriers to treat acidic leachates. Miner. Eng. 2006, 19, 505–514. [Google Scholar] [CrossRef]
- Rangsivek, R.; Jekel, M.R. Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Res. 2005, 39, 4153–4163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, S.; Lu, X.Q.; Chen, Z.L. Removal of Pb(II) from water using natural kaolin loaded with synthesized nanoscale zero-valent iron. Chem. Eng. J. 2010, 163, 243–248. [Google Scholar] [CrossRef]
- Kishimoto, N.; Iwano, S.; Narazaki, Y. Mechanistic consideration of zinc removal by zero-valent iron. Water Air Soil Pollut. 2011, 221, 183–189. [Google Scholar] [CrossRef]
- Kim, S.A.; Kamala-Kannan, S.; Lee, K.-J.; Park, Y.-J.; Shea, P.J.; Lee, W.- H.; Kim, H.-M.; Oh, B.-T. Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem. Eng. J. 2013, 217, 54–60. [Google Scholar] [CrossRef]
- Noubactep, C.; Schöner, A. Metallic iron: Dawn of a new era of drinking water treatment research? Fresenius Environ. Bull. 2010, 19, 1661–1668. [Google Scholar]
- Caré, S.; Crane, R.; Calabrò, P.S.; Ghauch, A.; Temgoua, E.; Noubactep, C. Modeling the permeability loss of metallic iron water filtration systems. CLEAN Soil Air Water 2013, 41, 275–282. [Google Scholar] [CrossRef]
- Domga, R.; Togue-Kamga, F.; Noubactep, C.; Tchatchueng, J.B. Discussing porosity loss of Fe0 packed water filters at ground level. Chem. Eng. J. 2015, 263, 127–134. [Google Scholar] [CrossRef]
- Noubactep, C.; Temgoua, E.; Rahman, M.A. Designing iron-amended biosand filters for decentralized safe drinking water provision. CLEAN Soil Air Water 2012, 40, 798–807. [Google Scholar] [CrossRef]
- Tepong-Tsindé, R.; Crane, R.; Noubactep, C.; Nassi, A.; Ruppert, H. Testing metallic iron filtration systems for decentralized water treatment at pilot scale. Water 2015, 7, 868–897. [Google Scholar] [CrossRef]
- Rahman, M.A.; Karmakar, S.; Salama, H.; Gactha-Bandjun, N.; Btatkeu-K, B.D.; Noubactep, C. Optimising the design of Fe0-based filtration systems for water treatment: The suitability of porous iron composites. J. Appl. Solut. Chem. Model. 2013, 2, 165–177. [Google Scholar]
- Anderson, W. On the purification of water by agitation with iron and by sand filtration. J. Soc. Arts 1886, 35, 29–38. [Google Scholar] [CrossRef]
- Anderson, M.A. Fundamental Aspects of Selenium Removal by Harza Process; Rep San Joaquin Valley Drainage Program; U.S. Department of the Interior: Sacramento, CA, USA, 1989.
- Illman, D.L. Water analysis in the developing world. Anal. Chem. 2006, 78, 5266–5272. [Google Scholar] [CrossRef]
- Lilje, J.; Mosler, H.-J. Continuation of health behaviors: Psychosocial factors sustaining drinking water chlorination in a longitudinal study from Chad. Sustainability 2016, 8, 1149. [Google Scholar] [CrossRef]
- Grady, C.; Younos, T. Bottled water technology and its global ramifications: An overview. Int Water Technol. J. 2012, 2, 185–194. [Google Scholar]
- Fugedi, U.; Kuti, L.; Jordan, G.; Kerek, B. Investigation of the hydrogeochemistry of some bottled mineral waters in Hungary. J. Geochem. Explor. 2010, 107, 305–316. [Google Scholar] [CrossRef]
- Gleick, P.H. A look at twenty-first century water resources development. Water Inter. 2000, 25, 127–138. [Google Scholar] [CrossRef]
Parameter | Units of Measurement | Methods |
---|---|---|
pH | pH unit | Potentiometric |
Electrical conductivity | µS/cm | Potentiometric |
Total dissolved solids | mg/L | Potentiometric |
Total hardness | mg/L CaCO3 | EDTA titrimetric |
Calcium | mg/L | EDTA titrimetric |
Magnesium | mg/L | Calculation |
Total alkalinity | mg/L CaCO3 | Titrimetric |
Fluoride | mg/L | Potentiometric (ISE) |
Chloride | mg/L | Argentometric |
Carbonate | mg/L | Titrimetric |
Sulfate | mg/L | Turbidimetric |
Phosphate | mg/L | Photometric |
Iron | mg/L | Photometric |
Manganese | mg/L | Photometric |
Potassium | mg/L | Potentiometric (ISE) |
Sodium | mg/L | Potentiometric (ISE) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndé-Tchoupé, A.I.; Tepong-Tsindé, R.; Lufingo, M.; Pembe-Ali, Z.; Lugodisha, I.; Mureth, R.I.; Nkinda, M.; Marwa, J.; Gwenzi, W.; Mwamila, T.B.; et al. White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania. Water 2019, 11, 131. https://doi.org/10.3390/w11010131
Ndé-Tchoupé AI, Tepong-Tsindé R, Lufingo M, Pembe-Ali Z, Lugodisha I, Mureth RI, Nkinda M, Marwa J, Gwenzi W, Mwamila TB, et al. White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania. Water. 2019; 11(1):131. https://doi.org/10.3390/w11010131
Chicago/Turabian StyleNdé-Tchoupé, Arnaud Igor, Raoul Tepong-Tsindé, Mesia Lufingo, Zuleikha Pembe-Ali, Innocent Lugodisha, Risala Iddi Mureth, Mihayo Nkinda, Janeth Marwa, Willis Gwenzi, Tulinave Burton Mwamila, and et al. 2019. "White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania" Water 11, no. 1: 131. https://doi.org/10.3390/w11010131
APA StyleNdé-Tchoupé, A. I., Tepong-Tsindé, R., Lufingo, M., Pembe-Ali, Z., Lugodisha, I., Mureth, R. I., Nkinda, M., Marwa, J., Gwenzi, W., Mwamila, T. B., Rahman, M. A., Noubactep, C., & Njau, K. N. (2019). White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania. Water, 11(1), 131. https://doi.org/10.3390/w11010131