The Po River Water Isotopes during the Drought Condition of the Year 2017
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Analytical Methods
2.3. Derived Parameters: Calculation of D-excess and LC-excess
3. Result
3.1. Isotopic Variation Along the Main Course
3.2. Isotopic Variation at the Pontelagoscuro Closing Section
3.3. Isotopic Variation in the Po River Delta
4. Discussion
4.1. Isotopic Variation along the Main Course
4.2. Isotopic Variation at the Pontelagoscuro Closing Section
4.3. Isotopic Variation in the Po River Delta
4.4. The δD-δ18O Variation and Inferences on Environmental Changes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Gonfiantini, R. Investigating the hydrological cycle with environmental isotopes. In Proceedings of the Actas II Simposio Sudamericano de Geologia Isotopica, Cordoba, Argentina, 12–16 September 1999; pp. 537–547. [Google Scholar]
- Rozanski, K.; Araguas, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records; American Geophysical Union: Washington, DC, USA, 1993; Volume 78, pp. 1–36. [Google Scholar]
- Halder, J.; Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. The Global Network of Isotopes in Rivers (GNIR): Integration of water isotopes in watershed observation and riverine research. Hydrol. Earth Syst. Sci. 2015, 19, 3419–3431. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kocman, D.; Miljević, N.; Vreča, P.; Vrzel, J.; Povinec, P. Distribution of H and O stable isotopes in the surface waters of the Sava River, the major tributary of the Danube River. J. Hydrol. 2018, 565, 365–373. [Google Scholar] [CrossRef]
- Kendall, C.; Coplen, T.B. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Process. 2001, 15, 1363–1393. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kanduč, T.; Stichler, W.; Vreča, P. Spatial and seasonal variations in δ18O and δD values in the River Sava in Slovenia. J. Hydrol. 2008, 359, 303–312. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Y.; He, Q.; Li, W.; Wang, Y. Isotopic characterization of river waters and water source identification in an inland river, Central Asia. Water 2016, 8, 286. [Google Scholar] [CrossRef]
- Frederickson, G.C.; Criss, R.E. Isotope hydrology and residence times of the unimpounded Meramec River Basin, Missouri. Chem. Geol. 1999, 157, 303–317. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Victoria, R.L.; Silveira Lobo Sternberg, L.; Ribeiro, A.; Zacharias Moreira, M. Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin. J. Hydrol. 1996, 183, 191–204. [Google Scholar] [CrossRef]
- Rank, D.; Wyhlidal, S.; Schott, K.; Weigand, S.; Oblin, A. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers. Isotopes Environ. Health Stud. 2018, 54, 115–136. [Google Scholar] [CrossRef]
- Reckerth, A.; Stichler, W.; Schmidt, A.; Stumpp, C. Long-term data set analysis of stable isotopic composition in German rivers. J. Hydrol. 2017, 552, 718–731. [Google Scholar] [CrossRef]
- Yi, Y.; Gibson, J.J.; Hélie, J.F.; Dick, T.A. Synoptic and time-series stable isotope surveys of the Mackenzie River from Great Slave Lake to the Arctic Ocean, 2003 to 2006. J. Hydrol. 2010, 383, 223–232. [Google Scholar] [CrossRef]
- Yang, K.; Han, G.; Liu, M.; Li, X.; Liu, J.; Zhang, Q. Spatial and Seasonal Variation of O and H Isotopes in the Jiulong River, Southeast China. Water 2018, 10, 1677. [Google Scholar] [CrossRef]
- Marchina, C.; Bianchini, G.; Natali, C.; Pennisi, M.; Colombani, N.; Tassinari, R.; Knöller, K. The Po river water from the Alps to the Adriatic Sea (Italy): New insights from geochemical and isotopic (δ18O-δD) data. Environ. Sci. Pollut. R. 2015, 22, 5184–5203. [Google Scholar] [CrossRef] [PubMed]
- Marchina, C.; Bianchini, G.; Knöller, K.; Natali, C.; Pennisi, M.; Colombani, N. Natural and anthropogenic variations in the Po river waters (northern Italy): Insights from a multi-isotope approach. Isot. Environ. Health Stud. 2016, 52, 649–672. [Google Scholar] [CrossRef] [PubMed]
- Marchina, C.; Bianchini, G.; Natali, C.; Knöller, K. Geochemical and isotopic analyses on the Po delta water: Insights to understand a complex riverine ecosystem. Rend. Lincei Sci. Fis. Nat. 2016, 27, 83–88. [Google Scholar] [CrossRef]
- Marchina, C.; Natali, C.; Fazzini, M.; Fusetti, M.; Tassinari, R.; Bianchini, G. Extremely dry and warm conditions in northern Italy during the year 2015: Effects on the Po river water. Rend. Lincei Sci. Fis. Nat. 2017, 28, 281–290. [Google Scholar] [CrossRef]
- Marchina, C.; Natali, C.; Fahnestock, M.F.; Pennisi, M.; Bryce, J.; Bianchini, G. Strontium isotopic composition of the Po river (Northern Italy): Insights into rock weathering at the basin scale. Appl. Geochem. 2018, 97, 187–196. [Google Scholar] [CrossRef]
- Chiogna, G.; Skrobanek, P.; Narany, T.S.; Ludwig, R.; Stumpp, C. Effects of the 2017 drought on isotopic and geochemical gradients in the Adige catchment, Italy. Sci. Total Environ. 2018, 645, 924–936. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G.; Marchina, C.; Knöller, K. Geochemistry of the Adige River water from the Eastern Alps to the Adriatic Sea (Italy): Evidences for distinct hydrological components and water-rock interactions. Environ. Sci. Pollut. Res. 2016, 23, 11677–11694. [Google Scholar] [CrossRef]
- Bianchini, G.; Natali, C.; Di Giuseppe, D.; Beccaluva, L. Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy): Characterisation and biomonitoring. J. Soil. Sediment. 2012, 12, 1145–1153. [Google Scholar] [CrossRef]
- Bianchini, G.; Di Giuseppe, D.; Natali, C.; Beccaluva, L. Ophiolite inheritance in the Po plain sediments: Insights on heavy metals distribution and risk assessment. Ofioliti 2013, 38, 1–14. [Google Scholar]
- Garzanti, E.; Vezzoli, G.; Andò, S. Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth Sci. Rev. 2011, 105, 25–48. [Google Scholar] [CrossRef]
- Ninfo, A.; Ciavola, P.; Billi, P. The Po Delta is restarting progradation: Geomorphological evolution based on a 47-years Earth Observation dataset. Sci. Rep. 2018, 8, 3457. [Google Scholar] [CrossRef] [PubMed]
- Kettner, A.J.; Syvitsky, J.P.M. Predicting discharge and sediment flux of the Po River, Italy since the Last Glacial Maximum. Spec. Publ. Int. Assoc. Sedimentol. 2008, 40, 171–189. [Google Scholar]
- Montanari, A. Hydrology of the Po River: Looking for changing patterns in river discharge. Hydrol. Earth Syst. Sci. 2012, 16, 3739–3747. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Fekete, B.; Tucker, B.A. River Discharge Database, Version 1.1 (RivDIS v1.0 Supplement); Institute for the Study of Earth, Oceans, and Space, University of New Hampshire: Durham, NH, USA, 1998. [Google Scholar]
- Tarpanelli, A.; Brocca, V.; Lacava, T.; Melone, F.; Moramarco, T.; Faruolo, M.; Pergola, N.; Tramutoli, V. Toward the estimation of river discharge variations using MODIS data in ungauged basins. Remote Sens. Environ. 2013, 136, 47–55. [Google Scholar] [CrossRef]
- Brian, M.; Del Longo, M.; Pecora, S.; Tugnoli, F. La siccità prolungata nel bacino del fiume Po. Ecoscienza 2017, 5, 10–11. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Landwehr, J.M.; Coplen, T.B. Line-conditioned excess: A new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. In Proceedings of the International Conference on Isotopes in Environmental Studies Aquatic Forum 2004, Monaco, 25–29 October 2004; IAEA: Wien, Austria, 2006; pp. 132–135. [Google Scholar]
- Landwehr, J.M.; Coplen, T.B.; Stewart, D.W. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA. Hydrol. Process. 2014, 28, 5382–5422. [Google Scholar] [CrossRef]
- Evaristo, J.; McDonnell, J.J.; Scholl, M.A.; Bruijnzeel, L.A.; Chun, K.P. Insights into plant water uptake from xylem-water isotope measurements in two tropical catchments with contrasting moisture conditions. Hydrol. Process. 2016, 30, 3210–3227. [Google Scholar] [CrossRef]
- Sprenger, M.; Tetzlaff, D.; Tunaley, C.; Dick, J.; Soulsby, C. Evaporation fractionation in a peatland drainage network affects stream water isotope composition. Water Resour. Res. 2017, 53, 851–866. [Google Scholar] [CrossRef] [Green Version]
- Giustini, F.; Brilli, M.; Patera, A. Mapping oxygen stable isotopes of precipitation in Italy. J. Hydrol. Reg. Stud. 2016, 8, 162–181. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Tian, L.; Biggs, T.W.; Wen, R. Deuterium-excess determination of evaporation to inflow ratios of an alpine lake: Implications for water balance and modelling. Hydrol. Process. 2017, 31, 1034–1046. [Google Scholar] [CrossRef]
- Scandellari, F.; Penna, D. Gli isotopi stabili nell’acqua fra suolo, pianta e atmosfera. Italus Hortus 2017, 24, 51–67. [Google Scholar]
- Penna, D.; Engel, M.; Mao, L.; Dell’Agnese, A.; Bertoldi, G.; Comiti, F. Tracer-based analysis of spatial and temporal variations of water sources in a glacierized catchment. Hydrol. Earth Syst. Sci. 2014, 18, 5271–5528. [Google Scholar] [CrossRef]
- Longinelli, A.; Selmo, E. Isotopic composition of precipitation in Italy: A first overall map. J. Hydrol. 2003, 270, 75–88. [Google Scholar]
- Crawford, J.; Hughes, C.E.; Lykoudis, S. Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data. J. Hydrol. 2014, 519, 2331–2340. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Paeth, H.; Vogt, A.; Paxian, A.; Hertig, E.; Seubert, S.; Jacobeit, J. Quantifying the evidence of climate change in the light of uncertainty exemplified by the Mediterranean hot spot region. Glob. Planet. Chang. 2017, 151, 144–151. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bullet. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Barredo, J.I.; Caudullo, G.; Dosio, A. Mediterranean habitat loss under future climate conditions: Assessing impacts on the Natura 2000 protected area network. Appl. Geogr. 2016, 75, 83–92. [Google Scholar] [CrossRef]
- Buosi, A.; Sfrisio, A. Macrophyte assemblage composition as a simple tool to assess global change in coastal areas. Freshwater impacts and climatic changes. Sci. Total Environ. 2017, 605–606, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Hueso, R.; Munzi, S.; Alonso, R. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions. Environ. Pollut. 2017, 227, 194–206. [Google Scholar] [CrossRef] [PubMed]
ID | Site | Latitude | Longitude | Period | δ18O ‰ | δD ‰ | D-exc ‰ | LC-exc ‰ |
---|---|---|---|---|---|---|---|---|
P | Pian del Re | 44°42′04.00″ | 07°05′42.00″ | 26 July 2017 | −12.7 | −85.8 | 15.9 | 4.8 |
S | Sanfront | 44°54′31.37″ | 07°41′29.93″ | 26 July 2017 | −11.7 | −75.2 | 18.3 | 7.4 |
C | Carignano | 45°07′29.63″ | 07°46′15.37″ | 17 May 2017 | −11.9 | −81.9 | 13.1 | 2.3 |
ST | Settimo Torinese | 45°10′32.96″ | 08°05′55.61″ | 17 May 2017 | −11.5 | −78.3 | 14.1 | 2.7 |
26 July 2017 | −10.8 | −76.2 | 10.2 | −0.8 | ||||
Cr | Crescentino | 45°08′39.77″ | 08°32′27.29″ | 17 May 2017 | −12.1 | −81.1 | 15.9 | 4.7 |
26 July 2017 | −11.5 | −74.6 | 17.1 | 6.4 | ||||
F | Frassineto Po | 45°2′10.95″ | 08°49′16.20″ | 17 May 2017 | −11.5 | −82.1 | 9.8 | −1.1 |
PC | Pieve al Cairo | 45°07′27.90″ | 09°09′31.96″ | 17 May 2017 | −10.8 | −72.9 | 13.9 | 2.5 |
26 July 2017 | −9.1 | −68.7 | 4.1 | −7.0 | ||||
R | Rea | 45°07′46.41″ | 09°38′07.16″ | 17 May 2017 | −11.2 | −71.2 | 18.2 | 7.4 |
SL | Senna Lodigiana | 45°03′41.76″ | 09°41′53.51″ | 17 May 2017 | −10.1 | −66.0 | 14.9 | 3.7 |
26 July 2017 | −9.0 | −63.0 | 9.0 | −2.1 | ||||
P | Piacenza | 45°07′43.34″ | 09°59′45.93″ | 17 May 2017 | −10.3 | −66.4 | 16.3 | 4.9 |
26 July 2017 | −8.7 | −63.9 | 5.5 | −5.4 | ||||
Cre | Cremona | 44°59′03.67″ | 10°18′27.70″ | 17 May 2017 | −10.0 | −67.3 | 12.4 | 1.6 |
26 July 2017 | −9.1 | −65.7 | 6.9 | −4.0 | ||||
Co | Coltaro | 45°03′27.46″ | 11°07′52.80’’ | 17 May 2017 | −10.0 | −67.1 | 12.7 | 1.8 |
26 July 2017 | −8.9 | −60.4 | 10.4 | −0.3 | ||||
Re | Revere | 44°55′04.78″ | 11°34′46.10″ | 17 May 2017 | −9.3 | −61.1 | 13.1 | 2.2 |
26 July 2017 | −8.5 | −61.4 | 6.8 | −4.5 |
δ18O ‰ | δD ‰ | D-exc ‰ | LC-exc ‰ | Q (m3/s) | |
---|---|---|---|---|---|
26 October 2016 | −9.0 | −59.7 | 12.3 | 1.2 | 825 |
November 2016 * | −8.7 | −57.3 | 12.3 | 1.2 | 3.298 |
2017 | |||||
8 February 2017 | −8.3 | −56.7 | 9.7 | −1.4 | 1.850 |
6 March 2017 | −9.2 | −61.8 | 11.8 | 0.7 | 980 |
5 April 2017 | −8.2 | −54.5 | 11.1 | 0.0 | 1.050 |
9 May 2017 | −8.8 | −55.5 | 14.9 | 3.8 | 1.348 |
5 June 2017 | −10.5 | −69.2 | 14.8 | 3.7 | 735 |
17 July 2017 | −8.9 | −59.9 | 11.3 | 0.2 | 545 |
10 August 2017 | −8.8 | −60.4 | 10.0 | −1.1 | 475 |
20 September 2017 | −8.7 | −60.5 | 9.1 | −2.0 | 1.190 |
ID | Po River Branches | Latitude | Longitude | Date | δ18O ‰ | δD ‰ | D-exc ‰ | LC-exc ‰ |
---|---|---|---|---|---|---|---|---|
FU1 | Po di Venezia | 44°57′25.00″ | 12°21′54.00″ | 23 August 2017 | −9.5 | −61.3 | 14.7 | 3.6 |
FU2 | 44°57′21.00″ | 12°25′09.00″ | 23 August 2017 | −9.1 | −62.3 | 10.5 | −0.6 | |
FU3 | 44°57′58.57″ | 12°31′21.10″ | 23 August 2017 | −8.8 | −55.3 | 15.5 | 4.0 | |
FU4 | Po di Tolle | 44°56′15.50″ | 12°26′04.92″ | 23 August 2017 | −8.9 | −59.6 | 11.6 | 0.5 |
FU5 | 44°53′50.56″ | 12°27′52.58″ | 23 August 2017 | −8.2 | −55.1 | 10.1 | −0.6 | |
FU6 | 44°51′14.43″ | 12°27′55.00″ | 23 August 2017 | −7.6 | −48.4 | 12.1 | 1.2 | |
FU7 | Po di Gnocca | 44°55′25.88″ | 12°19′14.68″ | 21 August 2017 | −9.0 | −60.2 | 11.8 | 0.7 |
FU8 | 44°50′40.81″ | 12°22′21.10″ | 21 August 2017 | −9.4 | −58.8 | 16.4 | 5.3 | |
FU9 | 44°48′40.64″ | 12°24′28.69″ | 21 August 2017 | −7.7 | −54.5 | 7.5 | −4.1 | |
FU12 | Po di Goro | 44°50′04.23″ | 12°20′41.42″ | 21 August 2017 | −7.7 | −58.1 | 3.5 | −7.7 |
FU11 | 44°48′25.77″ | 12°22′13.08″ | 21 August 2017 | −7.6 | −54.1 | 6.7 | −4.5 | |
FU10 | 44°47′37.97″ | 12°23′42.52″ | 21 August 2017 | −5.9 | −37.3 | 9.9 | −1.3 | |
FU15 | Po di Maistra | 44°57′42.44″ | 12°20′01.78″ | 23 August 2017 | −8.2 | −55.4 | 10.2 | −0.9 |
FU14 | 44°59′53.67″ | 12°23′48.82″ | 9 September 2017 | −8.2 | −52.5 | 13.1 | 2.0 | |
FU13 | 45°01′40.00″ | 12°24′35.38″ | 9 September 2017 | −3.6 | −33.2 | −4.3 | −15.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchina, C.; Natali, C.; Bianchini, G. The Po River Water Isotopes during the Drought Condition of the Year 2017. Water 2019, 11, 150. https://doi.org/10.3390/w11010150
Marchina C, Natali C, Bianchini G. The Po River Water Isotopes during the Drought Condition of the Year 2017. Water. 2019; 11(1):150. https://doi.org/10.3390/w11010150
Chicago/Turabian StyleMarchina, Chiara, Claudio Natali, and Gianluca Bianchini. 2019. "The Po River Water Isotopes during the Drought Condition of the Year 2017" Water 11, no. 1: 150. https://doi.org/10.3390/w11010150
APA StyleMarchina, C., Natali, C., & Bianchini, G. (2019). The Po River Water Isotopes during the Drought Condition of the Year 2017. Water, 11(1), 150. https://doi.org/10.3390/w11010150