Urban Hydroinformatics: Past, Present and Future
Abstract
:1. Introduction
1.1. Hydroinformatics—An Evolving Story
1.2. Aim of This Paper
2. From Theory to Practice
2.1. New Real Time Information
2.2. New Distributed Infrastructure Deployment
2.3. New Analytics
2.4. New Whole Water Cycle Socio-Technical System Models
- ▪
- Integration between centralised and decentralised solutions and (often also) between water infrastructure and urban fabric growth in a common (whole system) modelling environment. Indicative work in this context includes the Aquacycle model [55], the Urban Water Optioneering Tool (UWOT, see Rozos and Makropoulos [56]), UVQ [57] as well as the Dance4Water model [58], to name but a few. For an overview of key models as well as a discussion on the degree of integration, the reader is referred to Bach et al. [59]. These more integrated models, sometimes termed metabolism models (e.g., [60]) are increasingly being used to evaluate alternative pathways for the evolution of water systems under uncertainty, opening up the possibility of looking at a much wider palette of options than was possible with more traditional hydraulic-only models.
- ▪
- Integration between natural and engineered infrastructure systems and user interactions. This is a growing area of work, which also typically includes the explicit modelling of additional flows (e.g., the nexus between water, energy and material flows within an urban environment). Although approaches to this integration vary widely, these are based primarily on: (i) System dynamics (SD) and/or Bayesian belief networks (BBN); and (ii) agent-based models. Recent examples of the former types include Sahin et al. [61], Baki et al. [62] and Chhipi-Shrestha et al. [63]. In this context, Zomorodian et al. [64] provide an overview of SD applications for water management, while Sušnik et al. [65] provide a comparison between SD and BBN models for water management. Recent examples of the latter type include work by Kanta and Zechman [66], Berglund [67] and Koutiva and Makropoulos [68]. The power of these modelling approaches is that they enable the explicit integration of the socio-economic system into the modelling framework, which is especially important when looking into policy and end-user driven interventions, such as water demand management, water markets, innovation uptake etc.
- ▪
- Integration between the physical and cyber layer of water systems. This attempt on modelling integration represents a recent development, consistent with the move towards conceptualising water systems as a cyber-physical infrastructure. This conceptualisation, advocated already 10 years ago by Edward A. Lee [69] for a range of infrastructures, is currently being operationalised in the form of integrated simulation environments for the cyber and physical layers of a water system and their interactions [70,71,72]. Although this work is still not rolled out in an operational sense within water companies, it is argued that it will become more important in the next few years, as part of a risk management approach for both cyber and physical risks.
2.5. New forms of Interactive and Immersive Decision Making
2.6. New Design Concepts and Strategies
3. Sky Is (Not) the Limit
3.1. Tapping into the New Data Landscape
3.2. Getting More Out of Existing Models
3.3. Planning for More Resilient (Cyber-Physical) Systems and Services
3.4. Training, Engaging and Communicating
4. Some Words of Caution
5. Conclusions: A Bright Future with Some Caveats
Author Contributions
Funding
Conflicts of Interest
References
- Vojinovic, Z.; Abbott, M.B. Flood Risk and Social Justice: From Quantitative to Qualitative Flood Risk Assessment and Mitigation; IWA Publishing: London, UK, 2012; ISBN 9781843393870. [Google Scholar]
- Abbott, M. Hydroinformatics: Information Technology and the Aquatic Environment; Avebury Technical: Aldershot, UK, 1991; ISBN 1856288323. [Google Scholar]
- Holz, K.P.; Cunge, J.; Lehfeldt, R.; Savic, D. Hydroinformatics Vision 2011. In Advances in Hydroinformatics; Springer: Singapore, 2014; pp. 545–560. [Google Scholar]
- Journal of Hydroinformatics. Available online: https://iwaponline.com/jh (accessed on 16 September 2019).
- Environmental Modelling & Software. Available online: https://www.journals.elsevier.com/environmental-modelling-and-software (accessed on 16 September 2019).
- Vojinovic, Z.; Abbott, M. Twenty-Five Years of Hydroinformatics. Water 2017, 9, 59. [Google Scholar] [CrossRef]
- Li, E.; Endter-Wada, J.; Li, S. Characterizing and Contextualizing the Water Challenges of Megacities. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 589–613. [Google Scholar] [CrossRef]
- Makropoulos, C.; Nikolopoulos, D.; Palmen, L.; Kools, S.; Segrave, A.; Vries, D.; Koop, S.; van Alphen, H.J.; Vonk, E.; van Thienen, P.; et al. A resilience assessment method for urban water systems. Urban Water J. 2018, 15, 316–328. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manag. 2006, 21, 49–62. [Google Scholar] [CrossRef]
- Hounslow, A. Water Quality Data: Analysis and Interpretation; eBook; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781351404907. [Google Scholar]
- UN The 2018 Revision of World Urbanization Prospects. Available online: https://population.un.org/wup/ (accessed on 28 February 2019).
- Bouziotas, D.; Rozos, E.; Makropoulos, C. Water and the city: Exploring links between urban growth and water demand management. J. Hydroinform. 2015, 17, 176–192. [Google Scholar] [CrossRef]
- Makropoulos, C.K.; Memon, F.A.; Shirley-Smith, C.; Butler, D. Futures: An exploration of scenarios for sustainable urban water management. Water Policy 2008, 10, 345–373. [Google Scholar] [CrossRef]
- Brown, R.R.; Keath, N.; Wong, T.H.F. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef]
- Rygaard, M.; Binning, P.J.; Albrechtsen, H.J. Increasing urban water self-sufficiency: New era, new challenges. J. Environ. Manag. 2011, 92, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Selvakumar, A.; Tafuri, A.N. Rehabilitation of Aging Water Infrastructure Systems: Key Challenges and Issues. J. Infrastruct. Syst. 2012, 18, 202–209. [Google Scholar] [CrossRef]
- Wan, Z.; Hong, Y.; Khan, S.; Gourley, J.; Flamig, Z.; Kirschbaum, D.; Tang, G. A cloud-based global flood disaster community cyber-infrastructure: Development and demonstration. Environ. Model. Softw. 2014, 58, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Mounce, S.R.; Pedraza, C.; Jackson, T.; Linford, P.; Boxall, J.B. Cloud Based Machine Learning Approaches for Leakage Assessment and Management in Smart Water Networks. Procedia Eng. 2015, 119, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Eggimann, S.; Mutzner, L.; Wani, O.; Schneider, M.Y.; Spuhler, D.; Moy de Vitry, M.; Beutler, P.; Maurer, M. The Potential of Knowing More: A Review of Data-Driven Urban Water Management. Environ. Sci. Technol. 2017, 51, 2538–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubert, A.H.; Bauer, R.; Lienert, J. A review of water-related serious games to specify use in environmental Multi-Criteria Decision Analysis. Environ. Model. Softw. 2018, 105, 64–78. [Google Scholar] [CrossRef]
- Gibney, E. Google AI algorithm masters ancient game of Go. Nature 2016, 529, 445–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Thienen, P.; Beuken, R.; Vertommen, I.; Slaats, N. Perspective and Preconditions for the Development and Use of Autonomous Inspection Robots in Water Mains. Available online: https://www.kwrwater.nl/en/projecten/perspective-and-preconditions-for-the-development-and-use-of-autonomous-inspection-robots-in-water-mains/ (accessed on 16 September 2019).
- Rodina, L. Defining “water resilience”: Debates, concepts, approaches, and gaps. Wiley Interdiscip. Rev. Water 2019, 6, e1334. [Google Scholar] [CrossRef]
- Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Tao, R.; Maier, H.R.; See, L.; Savic, D.; Zhang, T.; Chen, Q.; Assumpção, T.H.; Yang, P.; Heidari, B.; et al. Crowdsourcing Methods for Data Collection in Geophysics: State of the Art, Issues, and Future Directions. Rev. Geophys. 2018, 56, 698–740. [Google Scholar] [CrossRef]
- Savic, D. A Smart City without Smart Water is Only a Pipe Dream! In Proceedings of the the Keynote Presentation Delivered at the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017. [Google Scholar]
- Sønderlund, A.L.; Smith, J.R.; Hutton, C.J.; Kapelan, Z.; Savic, D. Effectiveness of Smart Meter-Based Consumption Feedback in Curbing Household Water Use: Knowns and Unknowns. J. Water Resour. Plan. Manag. 2016, 142, 04016060. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, A.; Di Nardo, A.; Bernini, R.; Sanfilippo, L.; Paleari, O.; Savic, D.; Santonastaso, G.F.; Cocco, M.; Cousin, P.; Wouters, H.; et al. Smart Water Network Monitoring using innovative On-line Sensors. Geophys. Res. Abstr. 2018, 20, 16024. [Google Scholar]
- Kossieris, P.; Makropoulos, C. Exploring the Statistical and Distributional Properties of Residential Water Demand at Fine Time Scales. Water 2018, 10, 1481. [Google Scholar] [CrossRef]
- Doulamis, N.; Voulodimos, A.; Doulamis, A.; Bimpas, M.; Angeli, A.; Bakalos, N.; Giusti, A.; Philimis, P.; Varriale, A.; Ausili, A.; et al. Waterspy: A high sensitivity, portable photonic device for pervasive water quality analysis. Sensors 2019, 19. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Ponce Romero, J.; Hallett, S.; Jude, S. Leveraging Big Data Tools and Technologies: Addressing the Challenges of the Water Quality Sector. Sustainability 2017, 9, 2160. [Google Scholar] [CrossRef]
- Sicard, C.; Glen, C.; Aubie, B.; Wallace, D.; Jahanshahi-Anbuhi, S.; Pennings, K.; Daigger, G.T.; Pelton, R.; Brennan, J.D.; Filipe, C.D.M. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015, 70, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Farnham, D.; Gibson, R.; Hsueh, D.; McGillis, W.; Culligan, P.; Zain, N.; Buchanan, R. Citizen science-based water quality monitoring: Constructing a large database to characterize the impacts of combined sewer overflow in New York City. Sci. Total Environ. 2017, 580, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, K.A.; Stewart, R.A.; Zhang, H.; Sahin, O.; Siriwardene, N. Re-engineering traditional urban water management practices with smart metering and informatics. Environ. Model. Softw. 2018, 101, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.A.; Hoffmann, S.; Luthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef]
- Makropoulos, C.; Rozos, E.; Tsoukalas, I.; Plevri, A.; Karakatsanis, G.; Karagiannidis, L.; Makri, E.; Lioumis, C.; Noutsopoulos, C.; Mamais, D.; et al. Sewer-mining: A water reuse option supporting circular economy, public service provision and entrepreneurship. J. Environ. Manag. 2018, 216, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, L.; Vrettopoulos, M.; Amditis, A.; Makri, E.; Gkonos, N. A CPS-enabled architecture for sewer mining systems. In Proceedings of the 2016 International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater), Vienna, Austria, 11 April 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Psarrou, E.; Tsoukalas, I.; Makropoulos, C. A Monte-Carlo-Based Method for the Optimal Placement and Operation Scheduling of Sewer Mining Units in Urban Wastewater Networks. Water 2018, 10, 200. [Google Scholar] [CrossRef]
- Machell, J.; Mounce, S.R.; Farley, B.; Boxall, J.B. Online data processing for proactive UK water distribution network operation. Drink. Water Eng. Sci. 2014, 7, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.; Kapelan, Z.; Savić, D.A. Automated Detection of Pipe Bursts and Other Events in Water Distribution Systems. J. Water Resour. Plan. Manag. 2014, 140, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Berardi, L.; Giustolisi, O.; Kapelan, Z.; Savic, D.A. Development of pipe deterioration models for water distribution systems using EPR. J. Hydroinform. 2008, 10, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Taormina, R.; Galelli, S. Deep-Learning Approach to the Detection and Localization of Cyber-Physical Attacks on Water Distribution Systems. J. Water Resour. Plan. Manag. 2018, 144, 04018065. [Google Scholar] [CrossRef]
- Creaco, E.; Kossieris, P.; Vamvakeridou-Lyroudia, L.; Makropoulos, C.; Kapelan, Z.; Savic, D. Parameterizing residential water demand pulse models through smart meter readings. Environ. Model. Softw. 2016, 80, 33–40. [Google Scholar] [CrossRef]
- Tsoukalas, I.; Efstratiadis, A.; Makropoulos, C. Stochastic Periodic Autoregressive to Anything (SPARTA): Modeling and Simulation of Cyclostationary Processes with Arbitrary Marginal Distributions. Water Resour. Res. 2018, 54, 161–185. [Google Scholar] [CrossRef]
- Tsoukalas, I.; Makropoulos, C. Multiobjective optimisation on a budget: Exploring surrogate modelling for robust multi-reservoir rules generation under hydrological uncertainty. Environ. Model. Softw. 2015, 69, 396–413. [Google Scholar] [CrossRef]
- Marques, J.; Cunha, M.; Savić, D.A. Using real options for an eco-friendly design of water distribution systems. J. Hydroinform. 2015, 17, 20–35. [Google Scholar] [CrossRef]
- Pellegrino, R.; Costantino, N.; Giustolisi, O. Flexible investment planning for water distribution networks. J. Hydroinform. 2018, 20, 18–33. [Google Scholar] [CrossRef]
- Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in Optimisation of Water Distribution Systems? A Literature Review of System Design. Water 2018, 10, 307. [Google Scholar] [CrossRef]
- Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.S.; Cunha, M.C.; Dandy, G.C.; Gibbs, M.S.; Keedwell, E.; Marchi, A.; et al. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Kapelan, Z.; Kasprzyk, J.; Reed, P. Optimal Design of Water Distribution Systems Using Many-Objective Visual Analytics. J. Water Resour. Plan. Manag. 2012, 139, 624–633. [Google Scholar] [CrossRef]
- Khoury, M.; Gibson, M.J.; Savic, D.; Chen, A.S.; Vamvakeridou-Lyroudia, L.; Langford, H.; Wigley, S. A Serious Game Designed to Explore and Understand the Complexities of Flood Mitigation Options in Urban–Rural Catchments. Water 2018, 10, 1885. [Google Scholar] [CrossRef]
- Abbott, M. On definitions. J. Hydroinform. 2002, 4, 1–27. [Google Scholar] [CrossRef]
- Sivapalan, M. Debates-Perspectives on socio-hydrology: Changing water systems and the “tyranny of small problems”-Socio-hydrology. Water Resour. Res. 2015, 51, 4795–4805. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Mein, R.G.; McMahon, T.A. Modelling the urban water cycle. Environ. Model. Softw. 2001, 16, 615–629. [Google Scholar] [CrossRef]
- Rozos, E.; Makropoulos, C. Source to tap urban water cycle modelling. Environ. Model. Softw. 2013, 41, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, V.; Diaper, C.; Gray, S.; Rahilly, M. UVQ: Modelling the Movement of Water and Contaminants through the Total Urban Water Cycle. In Proceedings of the 28th International Hydrology and Water Resources Symposium: About Water; Symposium Proceedings, Novotel Northbeach, Wollongong, NSW, Australia, 10–13 November 2003; Available online: https://search.informit.com.au/documentSummary;dn=410125625788126;res=IELENG (accessed on 16 September 2019).
- Rauch, W.; Urich, C.; Bach, P.M.; Rogers, B.C.; de Haan, F.J.; Brown, R.R.; Mair, M.; McCarthy, D.T.; Kleidorfer, M.; Sitzenfrei, R.; et al. Modelling transitions in urban water systems. Water Res. 2017, 126, 501–514. [Google Scholar] [CrossRef]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling—Urban drainage and beyond. Environ. Model. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Behzadian, K.; Kapelan, Z. Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems. Sci. Total Environ. 2015, 527–528, 220–231. [Google Scholar] [CrossRef]
- Sahin, O.; Siems, R.S.; Stewart, R.A.; Porter, M.G. Paradigm shift to enhanced water supply planning through augmented grids, scarcity pricing and adaptive factory water: A system dynamics approach. Environ. Model. Softw. 2016, 75, 348–361. [Google Scholar] [CrossRef] [Green Version]
- Baki, S.; Rozos, E.; Makropoulos, C. Designing water demand management schemes using a socio-technical modelling approach. Sci. Total Environ. 2018, 622, 1590–1602. [Google Scholar] [CrossRef]
- Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Water–energy–carbon nexus modeling for urban water systems: System dynamics approach. J. Water Resour. Plan. Manag. 2017, 143, 04017016. [Google Scholar] [CrossRef]
- Zomorodian, M.; Lai, S.H.; Homayounfar, M.; Ibrahim, S.; Fatemi, S.E.; El-Shafie, A. The state-of-the-art system dynamics application in integrated water resources modeling. J. Environ. Manag. 2018, 227, 294–304. [Google Scholar] [CrossRef]
- Sušnik, J.; Molina, J.-L.; Vamvakeridou-Lyroudia, L.S.; Savić, D.A.; Kapelan, Z. Comparative Analysis of System Dynamics and Object-Oriented Bayesian Networks Modelling for Water Systems Management. Water Resour. Manag. 2013, 27, 819–841. [Google Scholar] [CrossRef]
- Kanta, L.; Zechman, E. Complex Adaptive Systems Framework to Assess Supply-Side and Demand-Side Management for Urban Water Resources. J. Water Resour. Plan. Manag. 2014, 140, 75–85. [Google Scholar] [CrossRef]
- Berglund, E.Z. Using Agent-Based Modeling for Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2015, 141, 04015025. [Google Scholar] [CrossRef]
- Koutiva, I.; Makropoulos, C. Modelling domestic water demand: An agent based approach. Environ. Model. Softw. 2016, 79, 35–54. [Google Scholar] [CrossRef]
- Lee, E.A. Cyber Physical Systems: Design Challenges. In Proceedings of the 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC); IEEE: New York, NY, USA, 2008; pp. 363–369. [Google Scholar] [Green Version]
- Lin, J.; Sedigh, S.; Miller, A. Towards Integrated Simulation of Cyber-Physical Systems: A Case Study on Intelligent Water Distribution. In Proceedings of the 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing; IEEE: New York, NY, USA, 2009; pp. 690–695. [Google Scholar]
- Taormina, R.; Galelli, S.; Tippenhauer, N.O.; Salomons, E.; Ostfeld, A. Characterizing Cyber-Physical Attacks on Water Distribution Systems. J. Water Resour. Plan. Manag. 2017, 143, 04017009. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Makropoulos, C.; Kalogeras, D.; Monokrousou, K.; Tsoukalas, I. Developing a Stress-Testing Platform for Cyber-Physical Water Infrastructure. In Proceedings of the 2018 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater); IEEE: New York, NY, USA, 2018; pp. 9–11. [Google Scholar]
- David, O.; Ascough, J.C.; Lloyd, W.; Green, T.R.; Rojas, K.W.; Leavesley, G.H.; Ahuja, L.R. A software engineering perspective on environmental modeling framework design: The Object Modeling System. Environ. Model. Softw. 2013, 39, 201–213. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, A.S.; Fu, G.; Djordjević, S.; Zhang, C.; Savić, D.A. An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features. Environ. Model. Softw. 2018, 107, 85–95. [Google Scholar] [CrossRef]
- Swain, N.R.; Latu, K.; Christensen, S.D.; Jones, N.L.; Nelson, E.J.; Ames, D.P.; Williams, G.P. A review of open source software solutions for developing water resources web applications. Environ. Model. Softw. 2015, 67, 108–117. [Google Scholar] [CrossRef]
- Vitolo, C.; Elkhatib, Y.; Reusser, D.; Macleod, C.J.A.; Buytaert, W. Web technologies for environmental Big Data. Environ. Model. Softw. 2015, 63, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Li, Z.; Ames, D.P.; Nelson, E.J.; Swain, N.R. Simplifying the deployment of OGC web processing services (WPS) for environmental modelling—Introducing Tethys WPS Server. Environ. Model. Softw. 2019, 115, 38–50. [Google Scholar] [CrossRef]
- Gao, F.; Yue, P.; Zhang, C.; Wang, M. Coupling components and services for integrated environmental modelling. Environ. Model. Softw. 2019, 118, 14–22. [Google Scholar] [CrossRef]
- Madani, K.; Pierce, T.W.; Mirchi, A. Serious games on environmental management. Sustain. Cities Soc. 2017, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Savic, D.A.; Morley, M.S.; Khoury, M. Serious gaming for water systems planning and management. Water 2016, 8, 456. [Google Scholar] [CrossRef]
- Medema, W.; Furber, A.; Adamowski, J.; Zhou, Q.; Mayer, I. Exploring the Potential Impact of Serious Games on Social Learning and Stakeholder Collaborations for Transboundary Watershed Management of the St. Lawrence River Basin. Water 2016, 8, 175. [Google Scholar] [CrossRef]
- Sušnik, J.; Chew, C.; Domingo, X.; Mereu, S.; Trabucco, A.; Evans, B.; Vamvakeridou-Lyroudia, L.; Savić, D.; Laspidou, C.; Brouwer, F. Multi-Stakeholder Development of a Serious Game to Explore the Water-Energy-Food-Land-Climate Nexus: The SIM4NEXUS Approach. Water 2018, 10, 139. [Google Scholar] [CrossRef]
- Van der Wal, M.M.; de Kraker, J.; Kroeze, C.; Kirschner, P.A.; Valkering, P. Can computer models be used for social learning? A serious game in water management. Environ. Model. Softw. 2016, 75, 119–132. [Google Scholar] [CrossRef]
- Schall, G.; Zollmann, S.; Reitmayr, G. Smart Vidente: Advances in mobile augmented reality for interactive visualization of underground infrastructure. Pers. Ubiquitous Comput. 2013, 17, 1533–1549. [Google Scholar] [CrossRef]
- Kamarainen, A.M.; Metcalf, S.; Grotzer, T.; Browne, A.; Mazzuca, D.; Tutwiler, M.S.; Dede, C. EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Comput. Educ. 2013, 68, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Rockefeller Foundation 100 Resilient Cities. Available online: https://www.rockefellerfoundation.org/our-work/initiatives/100-resilient-cities (accessed on 28 February 2019).
- Irwin, S.; Schardong, A.; Simonovic, S.; Nirupama, N. ResilSIM—A Decision Support Tool for Estimating Resilience of Urban Systems. Water 2016, 8, 377. [Google Scholar] [CrossRef]
- Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, resilient and sustainable water management: The Safe & SuRe approach. Glob. Chall. 2017, 1, 63–77. [Google Scholar]
- Klise, K.A.; Bynum, M.; Moriarty, D.; Murray, R. A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study. Environ. Model. Softw. 2017, 95, 420–431. [Google Scholar] [CrossRef]
- Kong, J.; Simonovic, S.P.; Zhang, C. Sequential Hazards Resilience of Interdependent Infrastructure System: A Case Study of Greater Toronto Area Energy Infrastructure System. Risk Anal. 2018. [Google Scholar] [CrossRef]
- Sweetapple, C.; Diao, K.; Farmani, R. A Tool for Global Resilience Analysis of Water Distribution Systems. In Proceedings of the WDSA/CCWI Joint Conference, Kingston, Canada, 23–25 July 2018. [Google Scholar]
- Dunn, G.; Brown, R.R.; Bos, J.J.; Bakker, K. The role of science-policy interface in sustainable urban water transitions: Lessons from Rotterdam. Environ. Sci. Policy 2017, 73, 71–79. [Google Scholar] [CrossRef]
- Chang, J.; Zhou, G.; Christensen, E.R.; Heideman, R.; Chen, J. Graphene-based sensors for detection of heavy metals in water: A review. Anal. Bioanal. Chem. 2014, 406, 3957–3975. [Google Scholar] [CrossRef]
- OGC OGC® WaterML. Available online: https://www.opengeospatial.org/standards/waterml (accessed on 16 September 2019).
- Horsburgh, J.S.; Tarboton, D.G.; Piasecki, M.; Maidment, D.R.; Zaslavsky, I.; Valentine, D.; Whitenack, T. An integrated system for publishing environmental observations data. Environ. Model. Softw. 2009, 24, 879–888. [Google Scholar] [CrossRef]
- Daniele, L.; den Hartog, F.; Roes, J. Created in Close Interaction with the Industry: The Smart Appliances REFerence (SAREF) Ontology. In International Workshop Formal Ontologies Meet Industries, August 2015; Springer: Cham, Switzerland, 2015; pp. 100–112. [Google Scholar]
- Howell, S.; Rezgui, Y.; Beach, T. Integrating building and urban semantics to empower smart water solutions. Autom. Constr. 2017, 81, 434–448. [Google Scholar] [CrossRef]
- ETSI Smart Appliances. Available online: https://www.etsi.org/technologies/smart-appliances?jjj=1568651031056 (accessed on 16 September 2019).
- Digital Single Market ETSI Releases Three New SAREF Ontology Specifications for Smart Cities, Industry 4.0 and Smart Agriculture. Available online: https://ec.europa.eu/digital-single-market/en/news/etsi-releases-three-new-saref-ontology-specifications-smart-cities-industry-40-and-smart (accessed on 16 September 2019).
- FIWARE: THE OPEN SOURCE PLATFORM FOR OUR SMART DIGITAL FUTURE. Available online: https://www.fiware.org/ (accessed on 16 September 2019).
- López-Riquelme, J.A.; Pavón-Pulido, N.; Navarro-Hellín, H.; Soto-Valles, F.; Torres-Sánchez, R. A software architecture based on FIWARE cloud for Precision Agriculture. Agric. Water Manag. 2017, 183, 123–135. [Google Scholar] [CrossRef]
- FIWARE for the Next Generation Internet Services for the WATER Sector. Available online: https://cordis.europa.eu/project/rcn/223257/factsheet/en?WT.mc_id=RSS-Feed&WT.rss_f=project&WT.rss_a=223257&WT.rss_ev=a (accessed on 16 September 2019).
- Kartakis, S.; Yu, W.; Akhavan, R.; McCann, J.A. Adaptive Edge Analytics for Distributed Networked Control of Water Systems. In Proceedings of the 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI); IEEE: New York, NY, USA, 2016; pp. 72–82. [Google Scholar] [Green Version]
- Conner, L.G.; Ames, D.P.; Gill, R.A. HydroServer Lite as an open source solution for archiving and sharing environmental data for independent university labs. Ecol. Inform. 2013, 18, 171–177. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Fu, H.; Li, Z.; Liu, Z.; Wang, Z. Research on big data digging of hot topics about recycled water use on micro-blog based on particle swarm optimization. Sustainability 2018, 10, 2488. [Google Scholar] [CrossRef]
- SURFACE WATER AND OCEAN TOPOGRAPHY. Available online: https://swot.jpl.nasa.gov/ (accessed on 16 September 2019).
- DI020: Fundament Digital City <<Digitaal Wegennet Amsterdam & Voorzieningen als Gedragsregels en Openbaar Register>>>. Available online: https://amsterdamsmartcity.com/projects/digitaal-wegennet-amsterdam (accessed on 16 September 2019).
- Bachmann, D.; Eilander, D.; de Leeuw, A.; de Bruijn, K.; Diermanse, F.; Weerts, A.; Beckers, J. Prototypes of risk-based flood forecasting systems in the Netherlands and Italy. E3S Web Conf. 2016, 7, 18018. [Google Scholar] [CrossRef] [Green Version]
- Lund, N.S.V.; Falk, A.K.V.; Borup, M.; Madsen, H.; Steen Mikkelsen, P. Model predictive control of urban drainage systems: A review and perspective towards smart real-time water management. Crit. Rev. Environ. Sci. Technol. 2018, 48, 279–339. [Google Scholar] [CrossRef]
- Garofalo, G.; Giordano, A.; Piro, P.; Spezzano, G.; Vinci, A. A distributed real-time approach for mitigating CSO and flooding in urban drainage systems. J. Netw. Comput. Appl. 2017, 78, 30–42. [Google Scholar] [CrossRef]
- Sun, C.; Cembrano, G.; Puig, V.; Meseguer, J. Cyber-Physical Systems for Real-Time Management in the Urban Water Cycle. In Proceedings of the 2018 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater); IEEE: New York, NY, USA, 2018; pp. 5–8. [Google Scholar] [Green Version]
- Hasan, S.; Foliente, G. Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: Emerging R & D challenges. Nat. Hazards 2015, 78, 2143–2168. [Google Scholar]
- Popescu, I.; Jonoski, A.; Bhattacharya, B. Experiences from online and classroom education in hydroinformatics. Hydrol. Earth Syst. Sci. 2012, 16, 3935–3944. [Google Scholar] [CrossRef]
- Abbott, M.B.; Solomatine, D.; Minns, A.W.; Verwey, A.; Van Nievelt, W. Education and training in hydroinformatics. J. Hydraul. Res. 1994, 32, 203–214. [Google Scholar] [CrossRef]
- Wigdor, D.; Wixon, D. Brave NUI World: Designing Natural User Interfaces for Touch and Gesture, 1st ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2011; ISBN1 0123822319. ISBN2 9780123822314. [Google Scholar]
- Richert, A.; Plumanns, L.; Gross, K.; Schuster, K.; Jeschke, S. Learning 4.0: Virtual Immersive Engineering Education. Digit. Univ. Int. Best Pract. Appl. 2015, 2, 51–66. [Google Scholar]
- NTNU Art & Technology Task Force NTNU ARTEC. Available online: https://www.ntnu.edu/artec (accessed on 16 September 2019).
- Slay, J.; Miller, M. Lessons Learned from the Maroochy Water Breach. In Critical Infrastructure Protection; Springer US: Boston, MA, USA, 2007; pp. 73–82. [Google Scholar] [Green Version]
- Stewart, R.A.; Nguyen, K.; Beal, C.; Zhang, H.; Sahin, O.; Bertone, E.; Vieira, A.S.; Castelletti, A.; Cominola, A.; Giuliani, M.; et al. Integrated intelligent water-energy metering systems and informatics: Visioning a digital multi-utility service provider. Environ. Model. Softw. 2018, 105, 94–117. [Google Scholar] [CrossRef]
- EU General Data Protection Regulation. Available online: https://eugdpr.org/ (accessed on 16 September 2019).
- Galdon-Clavell, G. (Not so) smart cities?: The drivers, impact and risks of surveillanceenabled smart environments. Sci. Public Policy 2013, 40, 717–723. [Google Scholar] [CrossRef]
- Kitchin, R. The ethics of smart cities and urban science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20160115. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makropoulos, C.; Savić, D.A. Urban Hydroinformatics: Past, Present and Future. Water 2019, 11, 1959. https://doi.org/10.3390/w11101959
Makropoulos C, Savić DA. Urban Hydroinformatics: Past, Present and Future. Water. 2019; 11(10):1959. https://doi.org/10.3390/w11101959
Chicago/Turabian StyleMakropoulos, C., and D. A. Savić. 2019. "Urban Hydroinformatics: Past, Present and Future" Water 11, no. 10: 1959. https://doi.org/10.3390/w11101959
APA StyleMakropoulos, C., & Savić, D. A. (2019). Urban Hydroinformatics: Past, Present and Future. Water, 11(10), 1959. https://doi.org/10.3390/w11101959